project21 commited on
Commit
78267a2
·
verified ·
1 Parent(s): 28b269a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -156
app.py CHANGED
@@ -1,190 +1,112 @@
 
1
  import gradio as gr
2
- from tensorflow.keras.utils import img_to_array,load_img
3
  from keras.models import load_model
4
  import numpy as np
 
5
 
6
  # Load the pre-trained model from the local path
7
  model_path = 'citrus.h5'
8
- model = load_model(model_path) # Load the model here
9
-
10
- def predict_disease(image_file, model, all_labels):
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  try:
13
  # Load and preprocess the image
14
- img = load_img(image_file, target_size=(224, 224)) # Use load_img from tensorflow.keras.utils
 
15
  img_array = img_to_array(img)
16
  img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
17
  img_array = img_array / 255.0 # Normalize the image
18
 
19
  # Predict the class
20
- predictions = model.predict(img_array) # Use the loaded model here
21
  predicted_class = np.argmax(predictions[0])
22
-
23
  # Get the predicted class label
24
  predicted_label = all_labels[predicted_class]
25
-
26
- # Print the predicted label to the console
27
-
28
- if predicted_label=='Citrus Healthy':
29
- predicted_label = predicted_label = """<h3 align="center">Citrus Healthy</h3><br><br>
30
- <center>No need use Pesticides</center>"""
31
- elif predicted_label=='Citrus Greening':
32
- predicted_label = """
33
- <style>
34
- li{
35
- font-size: 15px;
36
- margin-left: 90px;
37
- margin-top: 15px;
38
- margin-bottom: 15px;
39
- }
40
- h4{
41
- font-size: 17px;
42
- margin-top: 15px;
43
- }
44
- h4:hover{
45
- cursor: pointer;
46
- }
47
-
48
- h3:hover{
49
- cursor: pointer;
50
- color: blue;
51
- transform: scale(1.3);
52
- }
53
- .note{
54
- text-align: center;
55
- font-size: 16px;
56
- }
57
- p{
58
- font-size: 13px;
59
- text-align: center;
60
- }
61
-
62
- </style>
63
- <h3><center><b>Citrus Greening</b></center></h3>
64
- <h4>PESTICIDES TO BE USED:</h4>
65
- <ul>
66
  <li>1. Oxytetracycline (Terramycin)</li>
67
  <li>2. Streptomycin (Streptomycin sulfate)</li>
68
  <li>3. Mancozeb (Dithane)</li>
69
  <li>4. Copper oxychloride (Kocide)</li>
70
-
71
-
72
-
73
- </ul>
74
- <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
75
- <p>Be sure to follow local regulations and guidelines for application</p>
76
-
77
-
78
  """
79
- elif predicted_label=='Citrus Canker':
80
- predicted_label = """
81
- <style>
82
- li{
83
- font-size: 15px;
84
- margin-left: 90px;
85
- margin-top: 15px;
86
- margin-bottom: 15px;
87
- }
88
- h4{
89
- font-size: 17px;
90
- margin-top: 15px;
91
- }
92
- h4:hover{
93
- cursor: pointer;
94
- }
95
-
96
- h3:hover{
97
- cursor: pointer;
98
- color: blue;
99
- transform: scale(1.3);
100
- }
101
- .note{
102
- text-align: center;
103
- font-size: 16px;
104
- }
105
- p{
106
- font-size: 13px;
107
- text-align: center;
108
- }
109
-
110
- </style>
111
- <h3><center><b>Citrus Canker</b></center></h3>
112
- <h4>PESTICIDES TO BE USED:</h4>
113
- <ul>
114
  <li>1. Oxytetracycline (Terramycin)</li>
115
  <li>2. Streptomycin (Streptomycin sulfate)</li>
116
  <li>3. Mancozeb (Dithane)</li>
117
  <li>4. Copper oxychloride (Kocide)</li>
118
  <li>5. Azoxystrobin (Heritage)</li>
119
-
120
-
121
- </ul>
122
- <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
123
- <p>Be sure to follow local regulations and guidelines for application</p>
124
-
125
-
126
  """
127
- elif predicted_label=='Citrus Black Spot':
128
- predicted_label = """
129
- <style>
130
- li{
131
- font-size: 15px;
132
- margin-left: 90px;
133
- margin-top: 15px;
134
- margin-bottom: 15px;
135
- }
136
- h4{
137
- font-size: 17px;
138
- margin-top: 15px;
139
- }
140
- h4:hover{
141
- cursor: pointer;
142
- }
143
-
144
- h3:hover{
145
- cursor: pointer;
146
- color: blue;
147
- transform: scale(1.3);
148
- }
149
- .note{
150
- text-align: center;
151
- font-size: 16px;
152
- }
153
- p{
154
- font-size: 13px;
155
- text-align: center;
156
- }
157
-
158
- </style>
159
- <h3><center><b>Citrus Black Spot</b></center></h3>
160
- <h4>PESTICIDES TO BE USED:</h4>
161
- <ul>
162
  <li>1. Propiconazole (Tilt)</li>
163
  <li>2. Chlorothalonil (Daconil)</li>
164
  <li>3. Mancozeb (Dithane)</li>
165
  <li>4. Azoxystrobin (Heritage)</li>
166
  <li>5. Pyraclostrobin (Cabrio)</li>
167
-
168
-
169
- </ul>
170
- <p class="note"><b>* * * IMPORTANT NOTE * * *</b></p>
171
- <p>Be sure to follow local regulations and guidelines for application</p>
172
-
173
-
174
  """
175
-
176
-
177
-
 
 
 
178
  else:
179
- predicted_label = """<h3 align="center">Choose Correct image</h3><br><br>
180
- """
181
 
182
- return predicted_label
183
 
 
 
 
 
 
 
 
 
 
 
184
 
185
  except Exception as e:
186
- print(f"Error: {e}")
187
- return None
188
 
189
  # List of class labels
190
  all_labels = [
@@ -193,18 +115,42 @@ all_labels = [
193
  'Citrus Healthy','Citrus Black Spot'
194
  ]
195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
  # Define the Gradio interface
197
- def gradio_predict(image_file):
198
- return predict_disease(image_file, model, all_labels) # Pass the model to the function
 
 
199
 
200
- # Create a Gradio interface
201
  gr_interface = gr.Interface(
202
- fn=gradio_predict, # Function to call for predictions
203
- inputs=gr.Image(type="filepath"), # Upload image as file path
204
- outputs="html", # Output will be the class label as text
 
 
 
205
  title="Citrus Disease Predictor",
206
- description="Upload an image of a plant to predict the disease.",
207
  )
208
 
209
  # Launch the Gradio app
210
- gr_interface.launch(share=True)
 
1
+ import h5py
2
  import gradio as gr
3
+ from tensorflow.keras.utils import img_to_array, load_img
4
  from keras.models import load_model
5
  import numpy as np
6
+ from deep_translator import GoogleTranslator
7
 
8
  # Load the pre-trained model from the local path
9
  model_path = 'citrus.h5'
 
 
 
10
 
11
+ # Check if the model is loading correctly
12
+ try:
13
+ with h5py.File(model_path, 'r+') as f:
14
+ if 'groups' in f.attrs['model_config']:
15
+ model_config_string = f.attrs['model_config']
16
+ model_config_string = model_config_string.replace('"groups": 1,', '')
17
+ model_config_string = model_config_string.replace('"groups": 1}', '}')
18
+ f.attrs['model_config'] = model_config_string.encode('utf-8')
19
+
20
+ model = load_model(model_path)
21
+ print("Model loaded successfully.")
22
+ except Exception as e:
23
+ print(f"Error loading model: {e}")
24
+
25
+ def predict_disease(image_file, model, all_labels, target_language):
26
  try:
27
  # Load and preprocess the image
28
+ print(f"Received image file: {image_file}")
29
+ img = load_img(image_file, target_size=(224, 224)) # Ensure image size matches model input
30
  img_array = img_to_array(img)
31
  img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
32
  img_array = img_array / 255.0 # Normalize the image
33
 
34
  # Predict the class
35
+ predictions = model.predict(img_array)
36
  predicted_class = np.argmax(predictions[0])
37
+
38
  # Get the predicted class label
39
  predicted_label = all_labels[predicted_class]
40
+
41
+ # Translate the predicted label to the selected language
42
+ translated_label = GoogleTranslator(source='en', target=target_language).translate(predicted_label)
43
+
44
+ # Provide pesticide information based on the predicted label
45
+ if predicted_label == 'Citrus Greening':
46
+ pesticide_info = """
47
+ <h2><center><b>Citrus Greening</b></center></h2>
48
+ <h4>PESTICIDES TO BE USED:</h4><br>
49
+
50
+ <ul style="font-size:17px;margin-left:40px;">
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  <li>1. Oxytetracycline (Terramycin)</li>
52
  <li>2. Streptomycin (Streptomycin sulfate)</li>
53
  <li>3. Mancozeb (Dithane)</li>
54
  <li>4. Copper oxychloride (Kocide)</li>
55
+ </ul><br>
56
+ <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
57
+ <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
 
 
 
 
 
58
  """
59
+ elif predicted_label == 'Citrus Canker':
60
+ pesticide_info = """<h2><center><b>Citrus Canker</b></center></h2>
61
+ <h4>PESTICIDES TO BE USED:</h4><br>
62
+ <ul style="font-size:17px;margin-left:40px;">
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  <li>1. Oxytetracycline (Terramycin)</li>
64
  <li>2. Streptomycin (Streptomycin sulfate)</li>
65
  <li>3. Mancozeb (Dithane)</li>
66
  <li>4. Copper oxychloride (Kocide)</li>
67
  <li>5. Azoxystrobin (Heritage)</li>
68
+ </ul><br>
69
+ <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
70
+ <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
 
 
 
 
71
  """
72
+ elif predicted_label == 'Citrus Black Spot':
73
+ pesticide_info = """<h2><center><b>Citrus Black Spot</b></center></h2>
74
+ <h4>PESTICIDES TO BE USED:</h4><br>
75
+ <ul style="font-size:17px;margin-left:40px;">
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  <li>1. Propiconazole (Tilt)</li>
77
  <li>2. Chlorothalonil (Daconil)</li>
78
  <li>3. Mancozeb (Dithane)</li>
79
  <li>4. Azoxystrobin (Heritage)</li>
80
  <li>5. Pyraclostrobin (Cabrio)</li>
81
+ </ul><br>
82
+ <center><p class="note" style="font-size:15px;"><b>* * * IMPORTANT NOTE * * *</b></p></center><br>
83
+ <center><p style="font-size:13px;">Be sure to follow local regulations and guidelines for application</p></center>
 
 
 
 
84
  """
85
+
86
+
87
+ elif predicted_label == 'Citrus Healthy':
88
+ pesticide_info = """<h2><center><b>Citrus Healthy</b></center></h2>
89
+ <h5> No pesticides needed"""
90
+
91
  else:
92
+ pesticide_info = 'No pesticide information available.'
 
93
 
94
+ print(f"Pesticide Info (Before Translation): {pesticide_info}")
95
 
96
+ # Translate the pesticide information to the selected language
97
+ translated_pesticide_info = GoogleTranslator(source='en', target=target_language).translate(pesticide_info)
98
+ print(f"Translated Pesticide Info: {translated_pesticide_info}")
99
+
100
+ # Return translated label and pesticide information with associated styling
101
+ predicted_label_html = f"""
102
+
103
+ {translated_pesticide_info}
104
+ """
105
+ return predicted_label_html
106
 
107
  except Exception as e:
108
+ print(f"Error during prediction: {e}")
109
+ return f"<h3>Error: {e}</h3>"
110
 
111
  # List of class labels
112
  all_labels = [
 
115
  'Citrus Healthy','Citrus Black Spot'
116
  ]
117
 
118
+ # Language codes and their full names (display full names in dropdown)
119
+ language_choices = {
120
+ 'hi': 'Hindi',
121
+ 'te': 'Telugu',
122
+ 'en': 'English',
123
+ 'ml': 'Malayalam',
124
+ 'ta': 'Tamil',
125
+ 'bn': 'Bengali',
126
+ 'gu': 'Gujarati',
127
+ 'kn': 'Kannada',
128
+ 'mr': 'Marathi'
129
+ }
130
+
131
+ # Mapping full names back to their corresponding language code
132
+ full_to_code = {value: key for key, value in language_choices.items()}
133
+
134
+ # Create a dropdown of full language names, using the full name in the UI
135
+ languages = list(language_choices.values()) # List of full language names
136
+
137
  # Define the Gradio interface
138
+ def gradio_predict(image_file, target_language):
139
+ # Map full name back to language code for translation
140
+ language_code = full_to_code.get(target_language, 'en')
141
+ return predict_disease(image_file, model, all_labels, language_code)
142
 
143
+ # Create the Gradio interface
144
  gr_interface = gr.Interface(
145
+ fn=gradio_predict,
146
+ inputs=[
147
+ gr.Image(type="filepath"), # Image input for disease prediction
148
+ gr.Dropdown(label="Select language", choices=languages, value='English') # Language selection dropdown with full names
149
+ ],
150
+ outputs="html", # Output will be in HTML (translated text)
151
  title="Citrus Disease Predictor",
152
+ description="Upload an image of a plant to predict the disease and get the translated label and pesticide information in the selected language."
153
  )
154
 
155
  # Launch the Gradio app
156
+ gr_interface.launch()