EADOP-RAG / rag.py
crodri's picture
Update rag.py
395860b verified
raw
history blame
2.88 kB
import logging
import os
import requests
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
class RAG:
NO_ANSWER_MESSAGE: str = "Ho sento, no he pogut respondre la teva pregunta."
vectorstore = "index-intfloat_multilingual-e5-small-500-100-CA-ES" # mixed
#vectorstore = "vectorestore" # CA only
def __init__(self, hf_token, embeddings_model, model_name):
self.model_name = model_name
self.hf_token = hf_token
# load vectore store
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'})
self.vectore_store = FAISS.load_local("index-intfloat_multilingual-e5-small-500-100-CA-ES", embeddings, allow_dangerous_deserialization=True)#, allow_dangerous_deserialization=True)
logging.info("RAG loaded!")
def get_context(self, instruction, number_of_contexts=1):
documentos = self.vectore_store.similarity_search_with_score(instruction, k=number_of_contexts)
return documentos
def predict(self, instruction, context, model_parameters):
api_key = os.getenv("HF_TOKEN")
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
query = f"### Instruction\n{instruction}\n\n### Context\n{context}\n\n### Answer\n "
#prompt = "You are a helpful assistant. Answer the question using only the context you are provided with. If it is not possible to do it with the context, just say 'I can't answer'. <|endoftext|>"
payload = {
"inputs": query,
"parameters": model_parameters
}
response = requests.post(self.model_name, headers=headers, json=payload)
return response.json()[0]["generated_text"].split("###")[-1][8:]
def beautiful_context(self, docs):
text_context = ""
full_context = ""
source_context = []
for doc in docs:
text_context += doc[0].page_content
full_context += doc[0].page_content + "\n"
full_context += doc[0].metadata["Títol de la norma"] + "\n\n"
full_context += doc[0].metadata["url"] + "\n\n"
source_context.append(doc[0].metadata["url"])
return text_context, full_context, source_context
def get_response(self, prompt: str, model_parameters: dict) -> str:
docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"])
text_context, full_context, source = self.beautiful_context(docs)
del model_parameters["NUM_CHUNKS"]
response = self.predict(prompt, text_context, model_parameters)
if not response:
return self.NO_ANSWER_MESSAGE
return response, full_context, source