Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import logging | |
import os | |
import requests | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
class RAG: | |
NO_ANSWER_MESSAGE: str = "Ho sento, no he pogut respondre la teva pregunta." | |
vectorstore = "index-intfloat_multilingual-e5-small-500-100-CA-ES" # mixed | |
#vectorstore = "vectorestore" # CA only | |
def __init__(self, hf_token, embeddings_model, model_name): | |
self.model_name = model_name | |
self.hf_token = hf_token | |
# load vectore store | |
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'}) | |
self.vectore_store = FAISS.load_local("index-intfloat_multilingual-e5-small-500-100-CA-ES", embeddings, allow_dangerous_deserialization=True)#, allow_dangerous_deserialization=True) | |
logging.info("RAG loaded!") | |
def get_context(self, instruction, number_of_contexts=1): | |
documentos = self.vectore_store.similarity_search_with_score(instruction, k=number_of_contexts) | |
return documentos | |
def predict(self, instruction, context, model_parameters): | |
api_key = os.getenv("HF_TOKEN") | |
headers = { | |
"Accept" : "application/json", | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
query = f"### Instruction\n{instruction}\n\n### Context\n{context}\n\n### Answer\n " | |
#prompt = "You are a helpful assistant. Answer the question using only the context you are provided with. If it is not possible to do it with the context, just say 'I can't answer'. <|endoftext|>" | |
payload = { | |
"inputs": query, | |
"parameters": model_parameters | |
} | |
response = requests.post(self.model_name, headers=headers, json=payload) | |
return response.json()[0]["generated_text"].split("###")[-1][8:] | |
def beautiful_context(self, docs): | |
text_context = "" | |
full_context = "" | |
source_context = [] | |
for doc in docs: | |
text_context += doc[0].page_content | |
full_context += doc[0].page_content + "\n" | |
full_context += doc[0].metadata["Títol de la norma"] + "\n\n" | |
full_context += doc[0].metadata["url"] + "\n\n" | |
source_context.append(doc[0].metadata["url"]) | |
return text_context, full_context, source_context | |
def get_response(self, prompt: str, model_parameters: dict) -> str: | |
docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"]) | |
text_context, full_context, source = self.beautiful_context(docs) | |
del model_parameters["NUM_CHUNKS"] | |
response = self.predict(prompt, text_context, model_parameters) | |
if not response: | |
return self.NO_ANSWER_MESSAGE | |
return response, full_context, source |