Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Marina Pliusnina
commited on
Commit
•
2217335
1
Parent(s):
2b8b263
first
Browse files- README.md +4 -4
- app.py +128 -0
- gitignore +4 -0
- handler.py +14 -0
- input_reader.py +22 -0
- rag.py +73 -0
- rag_image.jpg +0 -0
- requirements.txt +8 -0
- utils.py +33 -0
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
+
title: Rag
|
3 |
+
emoji: 💻
|
4 |
+
colorFrom: indigo
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.14.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from gradio.components import Textbox, Button
|
4 |
+
# from AinaTheme import theme
|
5 |
+
from urllib.error import HTTPError
|
6 |
+
|
7 |
+
from rag import RAG
|
8 |
+
from utils import setup
|
9 |
+
|
10 |
+
setup()
|
11 |
+
|
12 |
+
|
13 |
+
rag = RAG(
|
14 |
+
hf_token=os.getenv("HF_TOKEN"),
|
15 |
+
embeddings_model=os.getenv("EMBEDDINGS"),
|
16 |
+
model_name=os.getenv("MODEL"),
|
17 |
+
|
18 |
+
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
def generate(prompt):
|
23 |
+
try:
|
24 |
+
output = rag.get_response(prompt)
|
25 |
+
return output
|
26 |
+
except HTTPError as err:
|
27 |
+
if err.code == 400:
|
28 |
+
gr.Warning(
|
29 |
+
"The inference endpoint is only available Monday through Friday, from 08:00 to 20:00 CET."
|
30 |
+
)
|
31 |
+
except:
|
32 |
+
gr.Warning(
|
33 |
+
"Inference endpoint is not available right now. Please try again later."
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def submit_input(input_):
|
38 |
+
if input_.strip() == "":
|
39 |
+
gr.Warning("Not possible to inference an empty input")
|
40 |
+
return None
|
41 |
+
|
42 |
+
output = generate(input_)
|
43 |
+
|
44 |
+
return output
|
45 |
+
|
46 |
+
|
47 |
+
def change_interactive(text):
|
48 |
+
if len(text) == 0:
|
49 |
+
return gr.update(interactive=True), gr.update(interactive=False)
|
50 |
+
return gr.update(interactive=True), gr.update(interactive=True)
|
51 |
+
|
52 |
+
|
53 |
+
def clear():
|
54 |
+
return (
|
55 |
+
None,
|
56 |
+
None,
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
def gradio_app():
|
61 |
+
with gr.Blocks() as demo:
|
62 |
+
with gr.Row():
|
63 |
+
with gr.Column(scale=0.1):
|
64 |
+
gr.Image("rag_image.jpg", elem_id="flor-banner", scale=1, height=256, width=256, show_label=False, show_download_button = False, show_share_button = False)
|
65 |
+
with gr.Column():
|
66 |
+
gr.Markdown(
|
67 |
+
"""# Retrieval-Augmented Generation (experimental)
|
68 |
+
🔍 **Retrieval-Augmented Generation** (RAG) is an AI framework for improving the quality of LLM-generated responses
|
69 |
+
by grounding the model on external sources of knowledge to supplement the LLM's internal representation of
|
70 |
+
information. Implementing RAG in an LLM-based question answering system has two main benefits: It ensures
|
71 |
+
that the model has access to the most current, reliable facts, and that users have access to the model's
|
72 |
+
sources, ensuring that the information can be checked for accuracy and ultimately trusted.
|
73 |
+
|
74 |
+
🎯 **Purpose:** The main purpose of this RAG is answering questions related to the [AI ACT](https://artificialintelligenceact.eu/wp-content/uploads/2024/01/AI-Act-FullText.pdf).
|
75 |
+
By incorporating external knowledge sources, RAG enables the LLM to provide more informed and reliable
|
76 |
+
responses specifically tailored to inquiries about it.
|
77 |
+
⚠️ **Limitations**: This version is for beta testing only. The content generated by these models is unsupervised
|
78 |
+
and might be wrong. Please bear this in mind when exploring this resource.
|
79 |
+
"""
|
80 |
+
)
|
81 |
+
with gr.Row(equal_height=True):
|
82 |
+
with gr.Column(variant="panel"):
|
83 |
+
input_ = Textbox(
|
84 |
+
lines=11,
|
85 |
+
label="Input",
|
86 |
+
placeholder="e.g. What is the AI Act?",
|
87 |
+
# value = "Quina és la finalitat del Servei Meteorològic de Catalunya?"
|
88 |
+
)
|
89 |
+
|
90 |
+
with gr.Column(variant="panel"):
|
91 |
+
output = Textbox(
|
92 |
+
lines=11, label="Output", interactive=False, show_copy_button=True
|
93 |
+
)
|
94 |
+
with gr.Row(variant="panel"):
|
95 |
+
clear_btn = Button(
|
96 |
+
"Clear",
|
97 |
+
)
|
98 |
+
submit_btn = Button("Submit", variant="primary", interactive=False)
|
99 |
+
|
100 |
+
input_.change(
|
101 |
+
fn=change_interactive,
|
102 |
+
inputs=[input_],
|
103 |
+
outputs=[clear_btn, submit_btn],
|
104 |
+
api_name=False,
|
105 |
+
)
|
106 |
+
|
107 |
+
input_.change(
|
108 |
+
fn=None,
|
109 |
+
inputs=[input_],
|
110 |
+
api_name=False,
|
111 |
+
js="""(i, m) => {
|
112 |
+
document.getElementById('inputlenght').textContent = i.length + ' '
|
113 |
+
document.getElementById('inputlenght').style.color = (i.length > m) ? "#ef4444" : "";
|
114 |
+
}""",
|
115 |
+
)
|
116 |
+
|
117 |
+
clear_btn.click(
|
118 |
+
fn=clear, inputs=[], outputs=[input_, output], queue=False, api_name=False
|
119 |
+
)
|
120 |
+
submit_btn.click(
|
121 |
+
fn=submit_input, inputs=[input_], outputs=[output], api_name="get-results"
|
122 |
+
)
|
123 |
+
|
124 |
+
demo.launch(show_api=True)
|
125 |
+
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
gradio_app()
|
gitignore
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
venv
|
2 |
+
**/__pycache__
|
3 |
+
.env
|
4 |
+
vectorestore/
|
handler.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
class ContentHandler():
|
4 |
+
content_type = "application/json"
|
5 |
+
accepts = "application/json"
|
6 |
+
|
7 |
+
def transform_input(self, prompt: str, model_kwargs: dict) -> bytes:
|
8 |
+
input_str = json.dumps({'inputs': prompt, 'parameters': model_kwargs})
|
9 |
+
return input_str.encode('utf-8')
|
10 |
+
|
11 |
+
def transform_output(self, output: bytes) -> str:
|
12 |
+
response_json = json.loads(output.read().decode("utf-8"))
|
13 |
+
return response_json[0]["generated_text"]
|
14 |
+
|
input_reader.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from llama_index.core.constants import DEFAULT_CHUNK_OVERLAP, DEFAULT_CHUNK_SIZE
|
4 |
+
from llama_index.core.readers import SimpleDirectoryReader
|
5 |
+
from llama_index.core.schema import Document
|
6 |
+
from llama_index.core import Settings
|
7 |
+
|
8 |
+
|
9 |
+
class InputReader:
|
10 |
+
def __init__(self, input_dir: str) -> None:
|
11 |
+
self.reader = SimpleDirectoryReader(input_dir=input_dir)
|
12 |
+
|
13 |
+
def parse_documents(
|
14 |
+
self,
|
15 |
+
show_progress: bool = True,
|
16 |
+
chunk_size: int = DEFAULT_CHUNK_SIZE,
|
17 |
+
chunk_overlap: int = DEFAULT_CHUNK_OVERLAP,
|
18 |
+
) -> List[Document]:
|
19 |
+
Settings.chunk_size = chunk_size
|
20 |
+
Settings.chunk_overlap = chunk_overlap
|
21 |
+
documents = self.reader.load_data(show_progress=show_progress)
|
22 |
+
return documents
|
rag.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
from langchain_community.vectorstores import FAISS
|
8 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
+
|
10 |
+
|
11 |
+
class RAG:
|
12 |
+
NO_ANSWER_MESSAGE: str = "Sorry, I couldn't answer your question."
|
13 |
+
|
14 |
+
|
15 |
+
def __init__(self, hf_token, embeddings_model, model_name):
|
16 |
+
|
17 |
+
|
18 |
+
self.model_name = model_name
|
19 |
+
self.hf_token = hf_token
|
20 |
+
|
21 |
+
# load vectore store
|
22 |
+
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'})
|
23 |
+
self.vectore_store = FAISS.load_local("vectorestore", embeddings, allow_dangerous_deserialization=True)#, allow_dangerous_deserialization=True)
|
24 |
+
|
25 |
+
logging.info("RAG loaded!")
|
26 |
+
|
27 |
+
def get_context(self, instruction, number_of_contexts=1):
|
28 |
+
|
29 |
+
context = ""
|
30 |
+
|
31 |
+
|
32 |
+
documentos = self.vectore_store.similarity_search_with_score(instruction, k=number_of_contexts)
|
33 |
+
|
34 |
+
|
35 |
+
for doc in documentos:
|
36 |
+
|
37 |
+
context += doc[0].page_content
|
38 |
+
|
39 |
+
return context
|
40 |
+
|
41 |
+
def predict(self, instruction, context):
|
42 |
+
|
43 |
+
api_key = os.getenv("HF_TOKEN")
|
44 |
+
|
45 |
+
|
46 |
+
headers = {
|
47 |
+
"Accept" : "application/json",
|
48 |
+
"Authorization": f"Bearer {api_key}",
|
49 |
+
"Content-Type": "application/json"
|
50 |
+
}
|
51 |
+
|
52 |
+
query = f"### Instruction\n{instruction}\n\n### Context\n{context}\n\n### Answer\n "
|
53 |
+
|
54 |
+
|
55 |
+
payload = {
|
56 |
+
"inputs": query,
|
57 |
+
"parameters": {}
|
58 |
+
}
|
59 |
+
|
60 |
+
response = requests.post(self.model_name, headers=headers, json=payload)
|
61 |
+
|
62 |
+
return response.json()[0]["generated_text"].split("###")[-1][8:-1]
|
63 |
+
|
64 |
+
def get_response(self, prompt: str) -> str:
|
65 |
+
|
66 |
+
context = self.get_context(prompt)
|
67 |
+
|
68 |
+
response = self.predict(prompt, context)
|
69 |
+
|
70 |
+
if not response:
|
71 |
+
return self.NO_ANSWER_MESSAGE
|
72 |
+
|
73 |
+
return response
|
rag_image.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.14.0
|
2 |
+
python-dotenv==1.0.0
|
3 |
+
llama-index==0.10.14
|
4 |
+
llama-index-embeddings-huggingface==0.1.4
|
5 |
+
llama-index-llms-huggingface==0.1.3
|
6 |
+
sentence-transformers
|
7 |
+
langchain
|
8 |
+
faiss-cpu
|
utils.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
|
7 |
+
from rag import RAG
|
8 |
+
|
9 |
+
USER_INPUT = 100
|
10 |
+
|
11 |
+
|
12 |
+
def setup():
|
13 |
+
load_dotenv()
|
14 |
+
warnings.filterwarnings("ignore")
|
15 |
+
|
16 |
+
logging.addLevelName(USER_INPUT, "USER_INPUT")
|
17 |
+
logging.basicConfig(format="[%(levelname)s]: %(message)s", level=logging.INFO)
|
18 |
+
|
19 |
+
|
20 |
+
def interactive(model: RAG):
|
21 |
+
logging.info("Write `exit` when you want to stop the model.")
|
22 |
+
print()
|
23 |
+
|
24 |
+
query = ""
|
25 |
+
while query.lower() != "exit":
|
26 |
+
logging.log(USER_INPUT, "Write the query or `exit`:")
|
27 |
+
query = input()
|
28 |
+
|
29 |
+
if query.lower() == "exit":
|
30 |
+
break
|
31 |
+
|
32 |
+
response = model.get_response(query)
|
33 |
+
print(response, end="\n\n")
|