Spaces:
Sleeping
Sleeping
File size: 65,054 Bytes
6d95c4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# pip install ipywidgets\n",
"# pip install plotly\n",
"# pip install ipympl"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import numpy as np\n",
"import pandas as pd\n",
"from typing import Any\n",
"from typing import Dict\n",
"from typing import List\n",
"import warnings\n",
"import math\n",
"\n",
"import ipywidgets as widgets\n",
"from ipywidgets import interact, interactive, interact_manual, GridBox, Layout, VBox, HBox\n",
"import matplotlib.pyplot as plt\n",
"import plotly.graph_objs as go\n",
"from plotly.subplots import make_subplots\n",
"\n",
"from data_encoder import DataEncoder\n",
"\n",
"# Silence xgboost warnings\n",
"warnings.filterwarnings(\"ignore\")\n",
"from xgboost import XGBRegressor\n",
"from keras.models import load_model\n",
"\n",
"\n",
"pd.set_option('display.max_columns', None)\n",
"\n",
"%matplotlib inline\n",
"%matplotlib widget"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"LAND_USE_COLS = ['c3ann', 'c3nfx', 'c3per', 'c4ann', 'pastr', 'range', 'secdf', 'secdn', 'urban']\n",
"DIFF_LAND_USE_COLS = [f\"{col}_diff\" for col in LAND_USE_COLS]\n",
"PRESCRIBED_LAND_USE_COLS = [f\"{col}_prescribed\" for col in LAND_USE_COLS]\n",
"OTHER_FEATURES_COLS = ['primf', 'primn', 'cell_area']\n",
"ALL_LAND_USE_COLS = ['primf', 'primn'] + LAND_USE_COLS\n",
"COLS_MAP = dict(zip(LAND_USE_COLS, DIFF_LAND_USE_COLS))\n",
"CHART_COLS = ALL_LAND_USE_COLS + [\"nonland\"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"CONTEXT_COLUMNS = ['c3ann', 'c3nfx', 'c3per', 'c4ann', 'pastr', 'primf', 'primn', 'range', 'secdf', 'secdn', 'urban', 'cell_area']\n",
"ACTION_COLUMNS = ['c3ann_diff', 'c3nfx_diff', 'c3per_diff', 'c4ann_diff', 'pastr_diff', 'range_diff', 'secdf_diff', 'secdn_diff', 'urban_diff']\n",
"OUTCOME_COLUMNS = ['ELUC', 'Change']\n",
"CONTEXT_ACTION_COLUMNS = CONTEXT_COLUMNS + ACTION_COLUMNS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"DATASET_CSV = '../data/gcb/processed/uk_eluc.csv'\n",
"with open(DATASET_CSV) as df_file:\n",
" data_source_df = pd.read_csv(df_file)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data_source_df.tail()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Code"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"fields = {'lat': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 53.93974, 'range': [50.125, 58.625], 'std_dev': 2.2288961, 'sum': 4630295, 'valued': 'CONTINUOUS'},\n",
" 'lon': {'data_type': 'FLOAT', 'has_nan': False, 'mean': -2.7644422, 'range': [-7.375, 1.625], 'std_dev': 1.9270877, 'sum': -237305.25, 'valued': 'CONTINUOUS'},\n",
" 'ELUC': {'data_type': 'FLOAT', 'has_nan': False, 'mean': -0.021404957, 'range': [-1.2820702, 2.3366203], 'std_dev': 0.18355964, 'sum': -1837.4443, 'valued': 'CONTINUOUS'},\n",
" 'time': {'data_type': 'INT', 'has_nan': False, 'mean': 1936, 'range': [1851, 2021], 'std_dev': 49.362892, 'sum': 166190110, 'valued': 'CONTINUOUS'},\n",
" 'c3ann': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.2667192, 'range': [0, 1], 'std_dev': 0.19391803, 'sum': 22895.709, 'valued': 'CONTINUOUS'},\n",
" 'c3nfx': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.014878354, 'range': [0, 1], 'std_dev': 0.0128484, 'sum': 1277.1877, 'valued': 'CONTINUOUS'},\n",
" 'c3per': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.00053631567, 'range': [0, 1], 'std_dev': 0.000610856, 'sum': 46.03841, 'valued': 'CONTINUOUS'},\n",
" 'c4ann': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.0063492954, 'range': [0, 1], 'std_dev': 0.0056106453, 'sum': 545.0362, 'valued': 'CONTINUOUS'},\n",
" 'i_lat': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 53.93974, 'range': [50.125, 58.625], 'std_dev': 2.2288961, 'sum': 4630295, 'valued': 'CONTINUOUS'},\n",
" 'i_lon': {'data_type': 'FLOAT', 'has_nan': False, 'mean': -2.7644422, 'range': [-7.375, 1.625], 'std_dev': 1.9270877, 'sum': -237305.25, 'valued': 'CONTINUOUS'},\n",
" 'pastr': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.31008992, 'range': [0, 1], 'std_dev': 0.1939609, 'sum': 26618.738, 'valued': 'CONTINUOUS'},\n",
" 'primf': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 3.1008868e-10, 'range': [0, 1], 'std_dev': 1.2718036e-09, 'sum': 2.6618633e-05, 'valued': 'CONTINUOUS'},\n",
" 'primn': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 7.880206e-11, 'range': [0, 1], 'std_dev': 6.0690847e-10, 'sum': 6.7645265e-06, 'valued': 'CONTINUOUS'},\n",
" 'range': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.058702312, 'range': [0, 1], 'std_dev': 0.12839052, 'sum': 5039.124, 'valued': 'CONTINUOUS'},\n",
" 'secdf': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.18520375, 'range': [0, 1], 'std_dev': 0.19961607, 'sum': 15898.26, 'valued': 'CONTINUOUS'},\n",
" 'secdn': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.06774911, 'range': [0, 1], 'std_dev': 0.1195767, 'sum': 5815.7197, 'valued': 'CONTINUOUS'},\n",
" 'urban': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.030199211, 'range': [0, 1], 'std_dev': 0.06684742, 'sum': 2592.3606, 'valued': 'CONTINUOUS'},\n",
" 'ELUC_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.00085764704, 'range': [-5, 5], 'std_dev': 0.091957845, 'sum': 73.62214, 'valued': 'CONTINUOUS'},\n",
" 'cell_area': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 45453.707, 'range': [40233.22, 49543.36], 'std_dev': 2439.213, 'sum': 3901837300, 'valued': 'CONTINUOUS'},\n",
" 'c3ann_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': -0.0003815445, 'range': [-1, 1], 'std_dev': 0.0042161522, 'sum': -32.75254, 'valued': 'CONTINUOUS'},\n",
" 'c3nfx_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': -2.3976065e-05, 'range': [-1, 1], 'std_dev': 0.00024510472, 'sum': -2.0581534, 'valued': 'CONTINUOUS'},\n",
" 'c3per_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': -5.9571926e-07, 'range': [-1, 1], 'std_dev': 1.0220871e-05, 'sum': -0.05113773, 'valued': 'CONTINUOUS'},\n",
" 'c4ann_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': -1.0171406e-05, 'range': [-1, 1], 'std_dev': 0.00010547795, 'sum': -0.8731338, 'valued': 'CONTINUOUS'},\n",
" 'pastr_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.0011081528, 'range': [-1, 1], 'std_dev': 0.0058669676, 'sum': 95.12605, 'valued': 'CONTINUOUS'},\n",
" 'range_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.00036852885, 'range': [-1, 1], 'std_dev': 0.007347369, 'sum': 31.635254, 'valued': 'CONTINUOUS'},\n",
" 'secdf_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': -0.00081145874, 'range': [-1, 1], 'std_dev': 0.008251627, 'sum': -69.65724, 'valued': 'CONTINUOUS'},\n",
" 'secdn_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': -0.0005189244, 'range': [-1, 1], 'std_dev': 0.0052026906, 'sum': -44.54551, 'valued': 'CONTINUOUS'},\n",
" 'urban_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 0.00026998913, 'range': [-1, 1], 'std_dev': 0.0007861656, 'sum': 23.176407, 'valued': 'CONTINUOUS'},\n",
" 'cell_area_diff': {'data_type': 'FLOAT', 'has_nan': False, 'mean': 45453.707, 'range': [40233.22, 49543.36], 'std_dev': 2439.213, 'sum': 3901837300, 'valued': 'CONTINUOUS'}}\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"cao_mapping = {\n",
" 'context': ['lat', 'lon', 'time', 'c3ann', 'c3nfx', 'c3per', 'c4ann', 'i_lat', 'i_lon', 'pastr', 'primf', 'primn', 'range', 'secdf', 'secdn', 'urban', 'cell_area'],\n",
" 'actions': ['c3ann_diff', 'c3nfx_diff', 'c3per_diff', 'c4ann_diff', 'pastr_diff', 'range_diff', 'secdf_diff', 'secdn_diff', 'urban_diff'],\n",
" 'outcomes': ['ELUC', 'Change']}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoder = DataEncoder(fields, cao_mapping)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"min_lat = data_source_df[\"i_lat\"].min()\n",
"max_lat = data_source_df[\"i_lat\"].max()\n",
"min_lon = data_source_df[\"i_lon\"].min()\n",
"max_lon = data_source_df[\"i_lon\"].max()\n",
"min_time = data_source_df[\"time\"].min()\n",
"max_time = data_source_df[\"time\"].max()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def _is_single_action_prescriptor(actions):\n",
" \"\"\"\n",
" Checks how many Actions have been defined in the Context, Actions, Outcomes mapping.\n",
" :return: True if only 1 action is defined, False otherwise\n",
" \"\"\"\n",
" return len(actions) == 1\n",
"\n",
"def _is_scalar(prescribed_action):\n",
" \"\"\"\n",
" Checks if the prescribed action contains a single value, i.e. a scalar, or an array.\n",
" A prescribed action contains a single value if it has been prescribed for a single context sample\n",
" :param prescribed_action: a scalar or an array\n",
" :return: True if the prescribed action contains a scalar, False otherwise.\n",
" \"\"\"\n",
" return prescribed_action.shape[0] == 1 and prescribed_action.shape[1] == 1\n",
"\n",
"def _convert_to_nn_input(context_df: pd.DataFrame) -> List[np.ndarray]:\n",
" \"\"\"\n",
" Converts a context DataFrame to a list of numpy arrays a neural network can ingest\n",
" :param context_df: a DataFrame containing inputs for a neural network. Number of inputs and size must match\n",
" :return: a list of numpy ndarray, on ndarray per neural network input\n",
" \"\"\"\n",
" # The NN expects a list of i inputs by s samples (e.g. 9 x 299).\n",
" # So convert the data frame to a numpy array (gives shape 299 x 9), transpose it (gives 9 x 299)\n",
" # and convert to list(list of 9 arrays of 299)\n",
" context_as_nn_input = list(context_df.to_numpy().transpose())\n",
" # Convert each column's list of 1D array to a 2D array\n",
" context_as_nn_input = [np.stack(context_as_nn_input[i], axis=0) for i in\n",
" range(len(context_as_nn_input))]\n",
" return context_as_nn_input"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def prescribe_from_model(prescriptor, context_df: pd.DataFrame) -> Dict[str, Any]:\n",
" \"\"\"\n",
" Generates prescriptions using the passed neural network candidate and context\n",
" :param prescriptor: a Keras neural network\n",
" ::param context_df: a DataFrame containing the context to prescribe for,\n",
" :return: a dictionary of action name to action value or list of action values\n",
" \"\"\"\n",
" action_list = ['recommended_land_use']\n",
" \n",
" # Convert the input df\n",
" context_as_nn_input = _convert_to_nn_input(context_df)\n",
" row_index = context_df.index\n",
" \n",
" # Get the prescrib?ed actions\n",
" prescribed_actions = prescriptor.predict(context_as_nn_input)\n",
" actions = {}\n",
"\n",
" if _is_single_action_prescriptor(action_list):\n",
" # Put the single action in an array to process it like multiple actions\n",
" prescribed_actions = [prescribed_actions]\n",
" \n",
" for i, action_col in enumerate(action_list):\n",
" if _is_scalar(prescribed_actions[i]):\n",
" # We have a single row and this action is numerical. Convert it to a scalar.\n",
" actions[action_col] = prescribed_actions[i].item()\n",
" else:\n",
" actions[action_col] = prescribed_actions[i].tolist()\n",
" \n",
" # Convert the prescribed actions to a DataFrame\n",
" prescribed_actions_df = pd.DataFrame(actions,\n",
" columns=action_list,\n",
" index=row_index)\n",
" return prescribed_actions_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def compute_percent_changed(encoded_context_actions_df):\n",
" # Sum the absolute values, but divide by 2 to avoid double counting\n",
" # Because positive diff is offset by negative diff\n",
" # context_action_df[DIFF_LAND_USE_COLS].abs().sum(axis=1) / 2\n",
"\n",
" encoded_context_actions_df = encoded_context_actions_df.reset_index(drop=True)\n",
" # Decode in order to get the signed land usage diff values\n",
" context_action_df = encoder.decode_as_df(encoded_context_actions_df)\n",
"\n",
" # Sum the positive diffs\n",
" percent_changed = context_action_df[context_action_df[DIFF_LAND_USE_COLS] > 0].sum(axis=1)\n",
" # Land usage is only a portion of that cell, e.g 0.8. Scale back to 1\n",
" # So that percent changed really represent the percentage of change within the land use\n",
" # portion of the cell\n",
" # I.e. how much of the pie chart has changed?\n",
" percent_changed = percent_changed / context_action_df[LAND_USE_COLS].sum(axis=1)\n",
" df = pd.DataFrame(percent_changed, columns=['Change'])\n",
" return df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def run_prescriptor(prescriptor_model, sample_context_df):\n",
" encoded_sample_context_df = encoder.encode_as_df(sample_context_df)\n",
" prescribed_actions_df = prescribe_from_model(prescriptor_model, encoded_sample_context_df)\n",
" reco_land_use_df = pd.DataFrame(prescribed_actions_df.recommended_land_use.tolist(),\n",
" columns=LAND_USE_COLS)\n",
"\n",
" used = sum(sample_context_df[LAND_USE_COLS].iloc[0].tolist())\n",
" for col in LAND_USE_COLS:\n",
" reco_land_use_df[col] *= used\n",
"\n",
" # Reattach primf and primn\n",
" reco_land_use_df[\"primf\"] = sample_context_df[\"primf\"].to_numpy()\n",
" reco_land_use_df[\"primn\"] = sample_context_df[\"primn\"].to_numpy()\n",
"\n",
" # Assuming there's no primary land left in this cell\n",
" # TODO: not correct. Need to account for primf and primn, that can't increase (no way to return to primary forest)\n",
" prescribed_land_use_pct = reco_land_use_df.iloc[0][ALL_LAND_USE_COLS].sum() * 100\n",
" print(f\"Presribed land usage: {prescribed_land_use_pct:.2f}% of land\")\n",
" \n",
" return reco_land_use_df[ALL_LAND_USE_COLS]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def run_predictor(predictor_model, context, actions):\n",
" encoded_sample_context_df = encoder.encode_as_df(sample_context_df)\n",
"\n",
" actions = [a / 100 for a in actions]\n",
" reco_land_use_df = pd.DataFrame([actions], columns=CHART_COLS)\n",
" reco_land_use_df = reco_land_use_df[LAND_USE_COLS]\n",
"\n",
" prescribed_actions_df = reco_land_use_df[LAND_USE_COLS].reset_index(drop=True) - sample_context_df[LAND_USE_COLS].reset_index(drop=True)\n",
" prescribed_actions_df.rename(COLS_MAP, axis=1, inplace=True)\n",
"\n",
" encoded_prescribed_actions_df = encoder.encode_as_df(prescribed_actions_df)\n",
"\n",
" encoded_context_actions_df = pd.concat([encoded_sample_context_df,\n",
" encoded_prescribed_actions_df],\n",
" axis=1)\n",
" \n",
" change_df = compute_percent_changed(encoded_context_actions_df)\n",
" \n",
" new_pred = predictor_model.predict(encoded_context_actions_df)\n",
" pred_df = pd.DataFrame(new_pred, columns=[\"ELUC\"])\n",
" # Decode output\n",
" out_df = encoder.decode_as_df(pred_df)\n",
" return out_df.iloc[0, 0], change_df.iloc[0, 0] * 100"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Predictor"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"predictor_model = XGBRegressor()\n",
"predictor_model.load_model(\"predictors/xgboost_predictor.json\")"
]
},
{
"attachments": {
"319f2a83-efbb-4017-83fb-c47e2e335906.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGwCAIAAADOgk3lAAAMQGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSIaEEEJASehNEagApIbQA0osgKiEJEEqMgaBiRxcVXLtYwIauiih2QCwoYmdR7H2xoKKsiwW78iYFdN1XvjffN3f++8+Z/5w5d+beOwBoHOdJJHmoJgD54kJpXGggc3RKKpP0FOCADshADbB4/AIJOyYmEsAy0P69vLsOEHl7xVGu9c/+/1q0BMICPgBIDMQZggJ+PsQHAMCr+BJpIQBEOW8xqVAix7ACHSkMEOL5cpylxFVynKHEexQ2CXEciFsBIKvzeNIsAOiXIM8s4mdBDXovxM5igUgMgAYTYr/8/AkCiNMhtoU2Eojl+qyMH3Sy/qaZMajJ42UNYuVcFIUcJCqQ5PGm/J/p+N8lP0824MMaVvVsaVicfM4wbzdzJ0TIsTrEPeKMqGiItSH+IBIo7CFGqdmysESlPWrEL+DAnAE9iJ0FvKAIiI0gDhHnRUWq+IxMUQgXYrhC0MmiQm4CxPoQzxcWBMerbDZKJ8SpfKH1mVIOW8Wf5UkVfuW+7styE9kq/dfZQq5KH6MXZyckQ0yF2LJIlBQFMR1ip4Lc+AiVzcjibE7UgI1UFieP3xLiOKE4NFCpjxVlSkPiVPZl+QUD88U2Zou4USq8rzA7IUyZH6yVz1PED+eCXRKK2YkDOsKC0ZEDcxEIg4KVc8eeCcWJ8SqdD5LCwDjlWJwqyYtR2ePmwrxQOW8OsVtBUbxqLJ5UCBekUh/PlBTGJCjjxItzeOExynjwJSAScEAQYAIZrBlgAsgBovaehh54p+wJATwgBVlACBxVzMCIZEWPGF7jQTH4EyIhKBgcF6joFYIiyH8dZJVXR5Cp6C1SjMgFTyDOBxEgD97LFKPEg96SwGPIiP7hnQcrH8abB6u8/9/zA+x3hg2ZSBUjG/DI1BiwJAYTg4hhxBCiHW6I++E+eCS8BsDqgrNwr4F5fLcnPCF0EB4SrhE6CbfGi0qkP0U5CnRC/RBVLjJ+zAVuDTXd8UDcF6pDZVwPNwSOuBv0w8b9oWd3yHJUccuzwvxJ+28z+OFpqOwozhSUMoQSQLH9eSTdnu4+qCLP9Y/5UcaaMZhvzmDPz/45P2RfANuIny2x+dh+7Ax2AjuHHcEaABNrxhqxNuyoHA+urseK1TXgLU4RTy7UEf3D38CTlWeywLnWudv5i7KvUDhZ/o4GnAmSKVJRVnYhkw2/CEImV8x3GsZ0cXZxBUD+fVG+vt7EKr4biF7bd27OHwD4Nvf39x/+zoU3A7DXE27/Q985Wxb8dKgBcPYQXyYtUnK4/EKAbwkNuNMMgAmwALZwPi7AA/iAABAMwkE0SAApYByMPhuucymYBKaB2aAUlIMlYCVYCzaAzWA72AX2gQZwBJwAp8EFcAlcA3fg6ukCL0AveAc+IwhCQmgIAzFATBErxAFxQViIHxKMRCJxSAqSjmQhYkSGTEPmIOXIMmQtsgmpQfYih5ATyDmkA7mFPEC6kdfIJxRD1VEd1Bi1RoejLJSNRqAJ6Fg0C52IFqNz0UXoarQa3YnWoyfQC+g1tBN9gfZhAFPD9DAzzBFjYRwsGkvFMjEpNgMrwyqwaqwOa4LP+QrWifVgH3EizsCZuCNcwWF4Is7HJ+Iz8IX4Wnw7Xo+34lfwB3gv/o1AIxgRHAjeBC5hNCGLMIlQSqggbCUcJJyCe6mL8I5IJOoRbYiecC+mEHOIU4kLieuIu4nHiR3ER8Q+EolkQHIg+ZKiSTxSIamUtIa0k9RMukzqIn0gq5FNyS7kEHIqWUwuIVeQd5CPkS+Tn5I/UzQpVhRvSjRFQJlCWUzZQmmiXKR0UT5Ttag2VF9qAjWHOpu6mlpHPUW9S32jpqZmrualFqsmUpultlptj9pZtQdqH9W11e3VOepp6jL1Rerb1I+r31J/Q6PRrGkBtFRaIW0RrYZ2knaf9oHOoDvRuXQBfSa9kl5Pv0x/qUHRsNJga4zTKNao0NivcVGjR5Oiaa3J0eRpztCs1DykeUOzT4uhNUIrWitfa6HWDq1zWs+0SdrW2sHaAu252pu1T2o/YmAMCwaHwWfMYWxhnGJ06RB1bHS4Ojk65Tq7dNp1enW1dd10k3Qn61bqHtXt1MP0rPW4enl6i/X26V3X+zTEeAh7iHDIgiF1Qy4Pea8/VD9AX6hfpr9b/5r+JwOmQbBBrsFSgwaDe4a4ob1hrOEkw/WGpwx7huoM9RnKH1o2dN/Q20aokb1RnNFUo81GbUZ9xibGocYS4zXGJ417TPRMAkxyTFaYHDPpNmWY+pmKTFeYNps+Z+oy2cw85mpmK7PXzMgszExmtsms3eyzuY15onmJ+W7zexZUC5ZFpsUKixaLXktTy1GW0yxrLW9bUaxYVtlWq6zOWL23trFOtp5n3WD9zEbfhmtTbFNrc9eWZutvO9G22vaqHdGOZZdrt87ukj1q726fbV9pf9EBdfBwEDmsc+gYRhjmNUw8rHrYDUd1R7ZjkWOt4wMnPadIpxKnBqeXwy2Hpw5fOvzM8G/O7s55zluc74zQHhE+omRE04jXLvYufJdKl6uuNNcQ15muja6v3BzchG7r3W66M9xHuc9zb3H/6uHpIfWo8+j2tPRM96zyvMHSYcWwFrLOehG8Ar1meh3x+ujt4V3ovc/7Lx9Hn1yfHT7PRtqMFI7cMvKRr7kvz3eTb6cf0y/db6Nfp7+ZP8+/2v9hgEWAIGBrwFO2HTuHvZP9MtA5UBp4MPA9x5sznXM8CAsKDSoLag/WDk4MXht8P8Q8JCukNqQ31D10aujxMEJYRNjSsBtcYy6fW8PtDfcMnx7eGqEeER+xNuJhpH2kNLJpFDoqfNTyUXejrKLEUQ3RIJobvTz6XoxNzMSYw7HE2JjYytgncSPipsWdiWfEj4/fEf8uITBhccKdRNtEWWJLkkZSWlJN0vvkoORlyZ2jh4+ePvpCimGKKKUxlZSalLo1tW9M8JiVY7rS3NNK066PtRk7eey5cYbj8sYdHa8xnjd+fzohPTl9R/oXXjSvmteXwc2oyujlc/ir+C8EAYIVgm6hr3CZ8Gmmb+ayzGdZvlnLs7qz/bMrsntEHNFa0aucsJwNOe9zo3O35fbnJeftzifnp+cfEmuLc8WtE0wmTJ7QIXGQlEo6J3pPXDmxVxoh3VqAFIwtaCzUgT/ybTJb2S+yB0V+RZVFHyYlTdo/WWuyeHLbFPspC6Y8LQ4p/m0qPpU/tWWa2bTZ0x5MZ0/fNAOZkTGjZabFzLkzu2aFzto+mzo7d/bvJc4ly0rezkme0zTXeO6suY9+Cf2ltpReKi29Mc9n3ob5+HzR/PYFrgvWLPhWJig7X+5cXlH+ZSF/4flfR/y6+tf+RZmL2hd7LF6/hLhEvOT6Uv+l25dpLSte9mj5qOX1K5gryla8XTl+5bkKt4oNq6irZKs6V0eublxjuWbJmi9rs9deqwys3F1lVLWg6v06wbrL6wPW120w3lC+4dNG0cabm0I31VdbV1dsJm4u2vxkS9KWM7+xfqvZari1fOvXbeJtndvjtrfWeNbU7DDasbgWrZXVdu9M23lpV9CuxjrHuk279XaX7wF7ZHue703fe31fxL6W/az9dQesDlQdZBwsq0fqp9T3NmQ3dDamNHYcCj/U0uTTdPCw0+FtR8yOVB7VPbr4GPXY3GP9zcXNfcclx3tOZJ141DK+5c7J0Sevtsa2tp+KOHX2dMjpk2fYZ5rP+p49cs773KHzrPMNFzwu1Le5tx383f33g+0e7fUXPS82XvK61NQxsuPYZf/LJ64EXTl9lXv1wrWoax3XE6/fvJF2o/Om4OazW3m3Xt0uuv35zqy7hLtl9zTvVdw3ul/9h90fuzs9Oo8+CHrQ9jD+4Z1H/EcvHhc8/tI19wntScVT06c1z1yeHekO6b70fMzzrheSF597Sv/U+rPqpe3LA38F/NXWO7q365X0Vf/rhW8M3mx76/a2pS+m7/67/Hef35d9MPiw/SPr45lPyZ+efp70hfRl9Ve7r03fIr7d7c/v75fwpDzFrwAGK5qZCcDrbQDQUgBgwPMZdYzy/KcoiPLMqkDgP2HlGVFRPACog//vsT3w7+YGAHu2wOMX1NdIAyCGBkCCF0BdXQfrwFlNca6UFyI8B2yM/ZqRnwH+TVGeOX+I++cWyFXdwM/tvwAhDHxoopYYDgAAADhlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAAqACAAQAAAABAAACQKADAAQAAAABAAABsAAAAADjJYjxAABAAElEQVR4Ae2dB3xUxfbHSe89JEBICCRSQgud0EGKCAjiU1SUIiIgIAL/J/JUUB4PVBCRjigiIkVQqoAFpIeW0EuUUEJJSCWVdP6/zQ2XZbMJm+y9m7u7v/34iXPnzj1z5juXPTszZ85YPHjwoAo/JEACJEACJGBsBCyNTWHqSwIkQAIkQAIqAjRgfA9IgARIgASMkgANmFF2G5UmARIgARKgAeM7QAIkQAIkYJQEaMCMstuoNAmQAAmQAA0Y3wESIAESIAGjJEADZpTdRqVJgARIgASsjRFBYWHhnTt3XFxcLCwsjFF/6kwCJEACJCAQwF7k9PT0GjVqWFqWe0BllAYM1svf35/dTwIkQAIkYBoEbt68WbNmzfK2xSgNGMZeaCca7OrqWt4GszwJkAAJkIByCKSlpWFAInyrl1crozRgwswhrBcNWHn7m+VJgARIQIEEKrYeVO45RwW2nCqRAAmQAAmYIQEaMDPsdDaZBEiABEyBAA2YKfQi20ACJEACZkiABswMO51NJgESIAFTIEADZgq9yDaQAAmQgBkSoAEzw05nk0mABEjAFAjQgJlCL7INJEACJGCGBGjAzLDT2WQSIAESMAUCNGBaenH27NmtWrXCznAfH58BAwZERUWJheLi4l5//fVq1ao5OTk1b978559/Fm+VkcjJyQkNDcVOvdOnT4vFzp4927FjR3t7e+xC//zzz8V8JkiABEiABHQhYKYGrKDwQXh00tbTt/EXaQ1S+/fvHzt27NGjR//444+8vLyePXtmZmYKZYYMGQJ7tm3btnPnzg0cOPCll146deqUxuMlL9977z2EqlTPR/QUiK1Vq1ZERMScOXM+/vjjr7/+Wr0A0yRAAiRAAk8ggEjARvdJTU1Fq/C3YprvOnen7aw/a03ZIfyHNHJKExUfH4+6YNKEAhh4rV69Wizs6em5YsUK8VJrYufOnfXr179w4QLkwNoJZZYsWeLh4YGRmXA5ZcqUevXqaX2cmSRAAiRgwgT0+T43uxHY7vOxY9ZExqZmi4Y9LjUbOcgXc9QTAlwYKiGzXbt2GzZsSE5OxpEu69evz87O7tKli3p5jfTdu3dHjhz5ww8/ODo6qt8KDw/v1KmTra2tkNmrVy8M7FJSUtTLME0CJEACJFAGAfMyYJgt/GT7RY0ZQ+ES+SXnEmGl3n333fbt2zdq1EiA+NNPP2FS0cvLy87ObtSoUZs3bw4ODi6NL340DRs2bPTo0S1bttQog7U0X19fMVNII1PMYYIESIAESKBsAuZlwI5fS1Yfe4loYMOQj7tijpDAStj58+cx0hLzP/roo3v37v35558nT56cNGkS1sCwGCbe1UgsXLgQB7VNnTpVI5+XJEACJEAC+hMwyuNUKtzs+PRHM4clhWjcHTdu3I4dOw4cOCAesxYdHb1o0SKYtIYNG+Lxpk2bHjx4cPHixcuWLSspDTl79+7FVCHGauJdDMUGDx78/fffw48Rs4tivpBGppjDBAmQAAmQQNkEzGsE5uNiXwYO8S6m/mC9MD0IC1S7dm3xkaysLKTVz722srLCNKNYQCOxYMGCM2fOwHUeH7hy4C7Wz/73v/8hERYWBtOI2UjhEbg7wokDbh0aEnhJAiRAAiRQGgHzGoG1ru1Z3c0eXhsay2AWVapUc7PHXQETZg7Xrl27detWbAUT1qXc3NwcHBzgTIgVLyx9zZ07F8tgW7ZsgeHBKK00uAEBAeItZ2dnpIOCgoTx3KuvvvrJJ5+MGDEC/ocY0n311VdffvmlWJgJEiABEiCBJxIwrxGYlaXF9H4hgAKLJX6ENPJxV8hcunQpnA/hXlj94QcjJ9yysbHBQKpq1ar9+vVr0qQJ/OkxGfjss8+KonRPwCL+/vvv165da9GixeTJk6dNm/bWW2/p/jhLkgAJkAAJWGC6zOgoYBcwDABsjKurawWUh8c8fA5Fbw6MyWC9nmlUvQKi+AgJkAAJkIA+BPT5PjevKUSBMmxVj5BqfRcevBSbPr5b8Lvd64pjL326gc+SAAmQAAkYkoB5TSGKZGGx6nirFqU8nWz1t16zZs3CEpfGp3fv3mJ1TJAACZAACUhOwBxHYAJEL2dVFIykjFz9mWKrMjaEaciB04dGDi9JgARIgAQkJGDGBsxJtT0rKTNHf5oINCXGmtJfGiWQAAmQAAnoQsBMpxCBRhiBJUoxAtMFNMuQAAmQAAlIS8B8DZh38RSiBCMwabuE0kiABEiABHQhYL4GzMtZmEKUYA1MF9AsQwIkQAIkIC0BMzZgTpI5cUjbJZRGAiRAAiSgCwEzNmBFI7CMnPzsvAJdSLEMCZAACZCAogiYrwFztbe2sVLFjkrK5Cyiot5JKkMCJEACOhEwXwNmYWHhJXjSZ9CPQ6d3hYVIgARIQFEEzNeAoRuK9zJzBKaoV5LKkAAJkIBuBMzcgBU5InIrmG7vCkuRAAmQgKIImLcBK3ZE5BSiot5JKkMCJEACOhGgAaMTh04vCguRAAmQgNIImLcBK/KkT6QTh9LeSupDAiRAAjoQMHMDxr3MOrwjLEICJEACiiRgCAO2ePHiwMBAe3v7Nm3aHD9+vCSHLl26wKld/dOnT5+SxSTPKQ6HKEVAesl1o0ASIAESIIGyCchuwDZs2DBp0qTp06dHRkY2bdq0V69e8fHxGjr98ssvsQ8/58+ft7KyevHFFzXKyHH5cB8YNzLLQZcySYAESEBeArIbsHnz5o0cOXL48OEhISHLli1zdHRcuXKlRptwmFa1h58//vgDZQxkwB6eafngwQMNlXhJAiRAAiSgcALyGrDc3NyIiIju3bsLFCwtLZEODw8vA8q333778ssvOzk5aZTJyclJU/to3K3YpTACyy0oTM/Jr5gEPkUCJEACJFBZBOQ1YImJiQUFBb6+vmLzkI6LixMvNRJYIcMU4ptvvqmRj8vZs2e7Pfz4+/uXLFCBHAdbKydbKzyYxL3MFcDHR0iABEigUgnIa8DK2zQMvxo3bty6deuSD06dOjX14efmzZslC1QsRzgVLJl+HBXDx6dIgARIoPIIWMtatbe3Nzwy7t69K9aCNFa7xEv1RGZm5vr162fMmKGeKabtij7ipVQJhEOMSc5K5AhMKqCUQwIkQAKGIiDvCMzW1rZFixZ79uwRmlNYWIh0WFiY1tZt3LgRC12vvfaa1rsyZdIRUSawFEsCJEACchOQdwQG7eFDP3To0JYtW2JicP78+RhmwSMR+UOGDPHz88PKlthCzB8OGDDAy8tLzDFAwovhEA1AmVWQAAmQgAwEZDdggwYNSkhImDZtGnw3QkNDd+/eLfh0xMTEwClRbFFUVNShQ4d+//13MccwCZ6oYhjOrIUESIAEJCcguwGDxuOKPhqq79u3Tz2nXr16lbIZS3DiYDhE9b5gmgRIgASMgsCjMZBRqCu5ksXRpOjEITlZCiQBEiABmQmYuwErduKgG73M7xnFkwAJkIDkBMzegD2MJiU5WQokARIgARKQlQANmOpEleQsxJNiOERZ3zQKJwESIAGJCZi7AfN0VBkwxPJNyWJMeonfLYojARIgAVkJmLsBs7ay9HC0AeLkTBowWd80CicBEiABiQmYuwEDTnrSS/xOURwJkAAJGIQADViVh8E4OAIzyBvHSkiABEhAIgI0YFW8ne0AMykjRyKkFEMCJEACJGAIAjRgVTyFcIhcAzPE+8Y6SIAESEAyAjRgWANTOSLyRBXJ3ikKIgESIAGDEKABK3bi4BSiQd43VkICJEACkhGgAavizSlEyV4nCiIBEiABwxGgAeMIzHBvG2siARIgAQkJ0IAVr4ElMSC9hK8VRZEACZCA/ARowDCFqHKjT8/Jz8kvkB84ayABEiABEpCGAA1YFVcHa2tLC+BkNClp3ilKIQESIAGDEKABq2JhYSF40nMW0SCvHCshARIgAWkI0ICpOArHWiYyGIc0LxWlkAAJkIAhCNCAqShzBGaId411kAAJkICkBGjAVDiLwyFmMhyipC8XhZEACZCAnARowFR0i8Mh0pNezleNskmABEhAWgI0YCqeDIco7VtFaSRAAiRgAAI0YCrIwlawJE4hGuCNYxUkQAIkIBEBGjAVSDpxSPQ6UQwJkAAJGI4ADZiKtRfPtDTcK8eaSIAESEAaAjRgKo5eRQHpEzNzHzx4IA1XSiEBEiABEpCZAA2YCrAwhZibX5iZy3CIMr9xFE8CJEACEhGgAVOBdLS1drS1QoLHWkr0XlEMCZAACchOgAasGDE96WV/11gBCZAACUhKgAasGKcQDpEjMEnfLgojARIgARkJ0IAVw/V2tkUqKTNXRtgUTQIkQAIkIB0BGrBilhyBSfdSURIJkAAJGIIADVgxZc+iEVgiwyEa4q1jHSRAAiQgAQEasGKIwlYwTiFK8E5RBAmQAAkYhAANWDHm4hNVeKalQV47VkICJEAC+hOgAStmyHCI+r9MlEACJEAChiRAA1ZMu9iJgwHpDfn2sS4SIAES0IMADVgxPMGNPjkzt7CQ4RD1eKH4KAmQAAkYigANWDFpj6J4vjBe9+7nGQo+6yEBEiABEqg4ARqwYnY2Vpbujja4YDCOir9NfJIESIAEDEiABuwR7OJDVbgV7BESpkiABEhAuQRowB71TfGxlvTjeISEKRIgARJQLgHZDdjixYsDAwPt7e3btGlz/PhxrSTu3bs3duzY6tWr29nZ1a1bd+fOnVqLyZ1ZHA6RIzC5QVM+CZAACUhBwFoKIaXK2LBhw6RJk5YtWwbrNX/+/F69ekVFRfn4+Kg/kJub26NHD2Ru2rTJz8/vxo0b7u7u6gUMlmY4RIOhZkUkQAIkoD8BeQ3YvHnzRo4cOXz4cCgKM/brr7+uXLny/fffV9cbOcnJyUeOHLGxUflQYLimfldM5xR9hMu0tDQxX8KEZ5EjYiID0kvIlKJIgARIQDYCMk4hYmgVERHRvXt3QXlLS0ukw8PDNdqybdu2sLAwTCH6+vo2atRo1qxZBQUFGmVwOXv2bLeHH39//5IF9M95OIWYo78oSiABEiABEpCbgIwGLDExEaYIZklsA9JxcXHipZC4evUqJg9REktfH3300RdffDFz5kyNMricOnVq6sPPzZs3SxbQP6fYiYNrYPqjpAQSIAESkJ+AvFOIuuhfWFiIBbCvv/7aysqqRYsWt2/fnjNnzvTp0zWehX8HPhqZ0l4yIL20PCmNBEiABGQlIKMB8/b2hk26e/eu2ACkq1WrJl4KCTgfYvULJYXLBg0aYJSG6UdbW9URyYb8PByBcQrRkNRZFwmQAAlUkICMU4iwQBhR7dmzR1ANIy2ksdyloWn79u2vXLmCu0L+33//DZNmeOuF2oU1sLTs/Nz8YmU0VOUlCZAACZCAcgjIaMDQSPjQr1ix4vvvv7906dKYMWMyMzMFj8QhQ4ZgTUuggHx4IU6YMAGmC26KcOKAQ0elAHK1t7G2tEDVCOlbKQqwUhIgARIgAd0JyDiFCCUGDRqUkJAwbdo0zAqGhobu3r1b8OmIiYmBU6KgJVwKf/vtt4kTJzZp0gT7wGDJpkyZonsDJCxpaWkBT/r49JzEjJxqbvYSSqYoEiABEiAByQlYPHhgfKeHYB8YPOrhk+jq6iotkd5fHbwUm/b9G607160qrWRKIwESIAESKElAn+9zeacQS+qq8BxuBVN4B1E9EiABEhAJ0ICJKFSJYk96bgV7jAovSIAESECJBGjAHusVwZM+kQHpH6PCCxIgARJQIgEasMd6RQiHmMQR2GNUeEECJEACSiRAA/ZYr3AN7DEcvCABEiABBROgAXusc4pPVOE+sMeo8IIESIAElEiABuyxXvFyVsWv4hTiY1B4QQIkQAKKJEAD9li3eDur4gUnZeYY4/a4x1rCCxIgARIwdQI0YI/1sDACy84rzMrVcibZY0V5QQIkQAIkUKkEaMAew+9oa+1go4qLz1nEx7jwggRIgASUR4AGTLNPhEEYt4JpcuE1CZAACSiMAA2YZoc8PBWMAek1yfCaBEiABBRFgAZMszu8nQRHRB5rqUmG1yRAAiSgKAI0YJrdUexJz61gmmB4TQIkQALKIkADptkfxeEQMzgC0yTDaxIgARJQFAEaMM3uYEB6TSK8JgESIAFFEqAB0+yWh1OIHIFpkuE1CZAACSiKAA2YZncUh0NkQHpNMLwmARIgAWURoAHT7I+HIzC60WuS4TUJkAAJKIoADZhmdwjhEJMzcwsLH2je4zUJkAAJkIBiCNCAaXaFh6NqH1hB4YPU+3ma93hNAiRAAiSgGAI0YJpdYWtt6eZgg1zEpNe8x2sSIAESIAHFEKAB09IVxeEQ6cehhQ2zSIAESEApBGjAtPSEt1PRqWA0YFrYMIsESIAElEKABkxLTzx0ROQUohY4zCIBEiABhRCgAdPSEZxC1AKFWSRAAiSgMAI0YFo65OFeZo7AtMBhFgmQAAkohAANmJaOKJ5C5BqYFjbMIgESIAGlEKAB09ITwggMe5m13GMWCZAACZCAMgjQgGnph+I1MO4D08KGWSRAAiSgFAI0YFp6wttZOJSZIzAtcJhFAiRAAgohQAOmpSOEKUSEksrNL9Rym1kkQAIkQAIKIEADpqUTEErKytICN1KyOAjTwodZJEACJKAEAjRgWnrB0tLC00k1i5iYQU96LXyYRQIkQAJKIEADpr0XvIoMWBI96bXjYS4JkAAJVD4BGjDtfSCcCsaA9NrpMJcESIAEFECABkx7J3Avs3YuzCUBEiABxRCgAdPeFYIjYiKnELXjYS4JkAAJVD4BGjDtffBwBEYnDu18mEsCJEAClU6ABkx7FwhOHIwmpZ0Oc0mABEhAAQRowLR3gpez6kzLRIZD1I6HuSRAAiRQ+QRowLT3AacQtXNhLgmQAAkohoAhDNjixYsDAwPt7e3btGlz/Pjxkm1ftWqVhdoHJUuWMXCOt5NqBMZ9YAbGzupIgARIQHcCshuwDRs2TJo0afr06ZGRkU2bNu3Vq1d8fHxJ/VxdXWMffm7cuFGygIFzhBHY/byCrNx8A1fN6kiABEiABHQhILsBmzdv3siRI4cPHx4SErJs2TJHR8eVK1eW1AwDsGoPP76+viULGDjH0dbK3kYFh4MwA5NndSRAAiSgIwF5DVhubm5ERET37t0FbSwtLZEODw8vqVxGRkatWrX8/f379+9/4cKFkgVycnLS1D4lC0ibA4P6cCsYPemlRUtpJEACJCANAXkNWGJiYkFBgfqICum4uDgN3evVq4dh2datW9esWVNYWNiuXbtbt25plJk9e7bbww/snMZdOS55KpgcVCmTBEiABKQiIK8B01HLsLCwIUOGhIaGdu7c+Zdffqlatery5cs1np06dWrqw8/Nmzc17spxKXjSMxyiHGwpkwRIgAT0J2Ctv4gyJHh7e1tZWd29e1csgzSWusTLkgkbG5tmzZpduXJF45Zd0UcjU9ZLYS8zo0nJCpnCSYAESKDCBOQdgdna2rZo0WLPnj2CfpgeRBrjrTLUxZTjuXPnqlevXkYZw9wqHoExHKJhcLMWEiABEignAXlHYFAGPvRDhw5t2bJl69at58+fn5mZCY9E5GPO0M/PDytbSM+YMaNt27bBwcH37t2bM2cO3OjffPPNcjZE+uLCGlhyJp04pGdLiSRAAiSgPwHZDdigQYMSEhKmTZsG3w2scu3evVvw6YiJiYFTotCAlJQUuNqjgIeHB0ZsR44cgc+9/m3TU4JwKHMSo0npyZGPkwAJkIA8BCwePHggj2QZpcKdHg6JcOnA9mf5qtn/d8LQlccbVHfdNaGjfLVQMgmQAAmYMwF9vs/lXQMz6l4RnDiSMjiFaNTdSOVJgARMlgANWKld610UkB4nqhQWGt8gtdRW8QYJkAAJmAoBGrBSe1JYA8svfJCWnVdqId4gARIgARKoJAI0YKWCt7W2dLVXOblwK1ipjHiDBEiABCqPQDkMGHzcv/nmG0TESE5OhsKILn/79u3K09wQNQuziFwGMwRr1kECJEAC5SSgqwE7e/Zs3bp1P/vss7lz58KSoRbEfIIxK2d1Rla8+FjLUjzply5d2qRJE3hC4oPd2bt27RKal52dPXbsWC8vL2dn5xdeeEE9EEnJ9p85c+aVV15BdEcHB4cGDRp89dVX6mV+/PFHnEGDEP7Y2f3GG28kJSWp32WaBEiABMyZgK4GDPuRhw0b9s8//4inTT777LMHDhwwbXaejrZo4F+X48OjkwpKuHLUrFnz008/Rbj9kydPduvWTYyjP3HixO3bt2/cuHH//v137twZOHBgGZTwuI+PD6IYIwb/Bx98gN8EixYtEsofPnwY271HjBiBW5CGs0CxW64MUbxFAiRAAuZFAPvAdPlgkIH4hCiJUUV0dDQS169fR3hCXZ6VvAx2gKGT8FdyyeoCd5270+CjXbWm7BD+azvrT+SoF9BIYxc2plgxPEU4R9gb4e6lS5egKk6Q0Shc2uXbb7/dtWtX4S6CktSpU0csuWDBAsQuES+ZIAESIAETIKDP97muIzDYKmw3U7ftf//9N8LGq+eYUnr3+dgxayKzcgvERsWlZiMH+WKOmED8xvXr1yNKFiYSMaLKy8sTj0CrX79+QECA1iPQxMfVE+hLT09PIQfSEHd/586deEcxD7lp0yaMetULM00CJEAC5kxAVwP23HPPIWIhvpoBC4c9IhDUlClTsMBjkuwwW/jJ9osam7+ES+SrzyUi7jCGpLDuo0eP3rx5MyJgISAWQhi7u7uLZLQegSbeVU8ghtaGDRveeustIbN9+/ZYA0MsLghECH8EH1m8eLF6eaZJgARIwJwJ6GrAvvjiCxyajNWa+/fv49QuBN51cXH53//+Z5Lsjl9Ljk3NLtk02DDk4654C0dxnj59+tixY2PGjEHM4osXL4q3yps4f/48VtGmT5/es2dP4VlImzBhAsJIYlSHGJKYs4WZLK9YlicBEiABUyWgazBf/Pz/448/Dh06BHdEWLLmzZuLs2SmhyY+XYv1EpupfhdjI9hy3EIM4hMnTsCHEAOm3NxcrISJg7AnHoGGx2Grnn76aYy9PvzwQ7EihOrHIOzf//43cuDu6OTk1LFjx5kzZyrhrBlRSSZIgARIoLII6GrABP06FH0qS1eD1evjYl9GXaXdxWlnOTk5sGRw4sCxZ8L8alRUFKZbsZpVhkA4GcKJEQM4jRFtVlaWtfWjDsLRoBCC9bAyRPEWCZAACZgPgUffj2W3GS5wGgWwEgaXeow/OnXqJHy3ahQw3svWtT2ru9nDa6OkrUBsjlaBHkLT4PLeu3dv+Gikp6evXbt23759v/32G4aqcHzHrgP4YsB1c/z48bBeOO2sNBqYOYT16tWrFx7B+hmKAabgHdOvXz/4zWO3Ge7Gxsa+++67OFOtRo0apYliPgmQAAmYFQFdDdiXX36JY70wJoCzOADhBC/sroX/Qnx8PFy9//rrL2zFNRlwVpYW0/uFwOfQAiOex1uVlp3/fxvPzB7YxMHWCm3HPi2YFhgtTPHBevXo0QPFwQpHnWEEhgEZbM+SJUsel/HYFXwLARb7wPARbtSqVQvLXUhj4x1MI7aFTZ48GROSsHPYSP7Yw7wgARIgATMmoOt5YOvWrfv666+xzykoKAi4sCds1KhRWLPBIs3LL78MHzl8ERsMoz7nx+iuJDzm4XMoenNgTNY+2HvzqdvwQqxfzWX56y1qeTnpLo0lSYAESIAEShLQ5/tcVwMGu/Xzzz/jSGWx+lOnTmGQcfXqVTh/I4GBiHhL7oQ+DS6XbrBV8DmE1wbWvTCviJHZsatJY9eeSszIcbG3nj8o9OkGvuUSyMIkQAIkQALqBPT5PtfVjR72KT8/X71WXAprNliVwUyX+i2TScNihQV59Q/1w1+k0a42dbx2jO/QPMA9PTt/xPcn5/3xt46nhcEDHjOuGh+6xZvMq8KGkAAJGJ6AriOwPn36wFxhCrFZs2bQEsMv+Bdg5nDHjh2I+/ef//wHW3oNpr0+FlsSJXPzC2f+enF1+A1I61KvKoZi7kVRE8sQjgUzqK1RAF4e2FqnkclLEiABEjAfAvp8n+tqwGC9Xn/9dXiHw0ccZDH8wr6lH374AWEm4MGBCB3i9lsDcNenwRKq93PErf9sPpeTX+jv6bDstRYNa7hJKJyiSIAESMAcCOjzfa6rARM4Xr58GSEQkUYECnwqC64+DZZW5wt3UkevibiZfN/O2nL2wMYDm9eUVj6lkQAJkIBpE9Dn+7x8BkwhHPVpsORNuJeV++6G0/uiEiB5SFitD/uE4ChnyWuhQBIgARIwSQL6fJ/rasAQcH3VqlWYQsRaDkJOiBz37t0rpg2W0KfBcigJP475e/5ZsOcfCId/x5LBLaq5lRXLQw4dKJMESIAEjJGAPt/num5kRlRZGDC4cjRq1AgxOIwRk3w6W1paTOpRt2lNt4kbTkfG3Ou78NDiV5vBX1G+GimZBEiABEhA1xGYt7f36tWrFXIelT4WW9Yuv5GUOeqHiMtx6fC5/8+zDd5oH0hjLytwCicBEjB2Avp8n+u6WiOGXTd2WLLqj9gcm99uPyC0BnZA/3fHxXfWn87MeWzznKy1UzgJkAAJmBUBXQ0YwvHhrBCGQn/iy4EYiV8OCv24X4i1pcX2M3eeX3L4WmLmE59iARIgARIggfIS0HUK8fnnn8d+L0RYb9iwobAVTKjpl19+KW+V+pfXZ8ipf+06SjhxPfntHyMT0nNc7KznDQrtEcKgUzqSYzESIAEzIqDP97muThyIhg4bZkZQ9W5qq0DPX8d3GLs28sT1lJGrT47rGjyxR10hHpXesimABEiABEigiq4jMEWh0sdiG7gheQWFs3Ze+u7wddTb8SnvBS8383CyNbAOrI4ESIAEFEtAn+9zXdfAFNt4hStmY2U5vV/Dr14OtbexPPhPIjzsz99OVbjOVI8ESIAEjIJAOUZgOPHrp59+iomJyc3NFdsWGRkppg2W0MdiG0xJjYouxaYh6NSNpCzE6Zg5oNFLLU3n/E+NlvKSBEiABHQnoM/3ua4jsAULFgwfPhyhexGHHgfbe3l54SSw3r17666lmZdsUN1127gOT9f3QST79zadLYoCXGDmTNh8EiABEtCHgK4GbMmSJTiReeHChdgQ9t577/3xxx/vvPNOaipnw8oB383BZsWQlojZgUgma4/FDFp+NDb1fjmeZ1ESIAESIAE1AroaMMwctmvXDg86ODgIx1fidJV169apiWLyyQQQdOqdp59aOawVjNnpm/f6Ljh0JDrxyY+xBAmQAAmQQAkCuhownF2ZnJyMxwMCAo4ePYrEtWvXuK+5BE+dMrrW89k+rkNIddekzNzXvjn29YFoktQJHAuRAAmQgBoBXQ1Yt27dtm3bhgexEjZx4sQePXoMGjSIO8PUSJYvGeDl+POYdgOb+xU+qDJr5+Vxa09lMOhU+RCyNAmQgLkT0NULEUeo4GNtrdr4vH79+iNHjjz11FOjRo3CkpjhEerjtWJ4bcuoEQOvNcdiZmy/kFfwINjHefnrLYKqOpdRnrdIgARIwMQI6PN9rqsBUxQyfRqsqIYIykTcSHn7x4i7aTnOdtZzX2zyTKPqClSSKpEACZCAHAT0+T4vhwG7d+/e8ePHNQ60HDJkiBxNKlumPg0uW3Jl3UXIxHFrI49dU60yju4c9H8961pb6Tq7W1k6s14SIAES0J+APt/nuhqw7du3Dx48OCMjw9XVVTzjCgnBs0P/NpRLgj4NLldFhiyMoFOf7br8zaFrqLR9sBeCTnk52xlSAdZFAiRAAoYnoM/3ua4GrG7dujjNctasWY6OjoZvoUaN+jRYQ5TSLnECy5Sfz2blFtRws1/6Woum/u5K05D6kAAJkICEBPT5Ptd1nur27dvYuawE6yUhOAWK6te0xpax7Wt7O91JzX5xWfj64zEKVJIqkQAJkIASCOhqwHr16nXy5MmKabx48eLAwEB7e/s2bdpgFa0MIfBvxLTkgAEDyihj8rfq+rpsHdce54flFhS+/8u5KZvOZucx6JTJdzsbSAIkUG4CT5hCFPZ+QWpCQsKMGTOwCaxx48bqB1o+99xzZde5YcMGOHosW7YM1mv+/PkbN26Miory8fEp+dT169c7dOhQp04dHJu5ZcuWkgXEHH2GnKIQhScKCx8s3R899/eoBw+qNKnphulEP3cHhetM9UiABEigvAT0+T5/ggGztCxriIbRUkHBEwYHsFutWrVatGgRWoWdZP7+/uPHj3///fc1Ggk5nTp1euONNw4ePAh3x5IGLKfoIzyFBkMOIjHCo0RDjoldHvg74Z31p+5l5Xk42ix8pXmHp7xNrIFsDgmQgJkT0MeAlWWfgLVo+3Kpf55ovXDwSkRERPfu3YUegjlEOjw8vGSHYXiHYdmIESNK3hJyZs+e7fbwA+tVWjETy+9UtyqCTjX2c0vJyhuy8tiSfVcYdMrEupjNIQESqDCBJxgwyN27d29ISAiMpHodGP00bNgQoyX1zJLpxMREGDkcwiLeQjouLk68FBKHDh369ttvV6xYoZGvfjl16lRUKnxu3rypfsu00/6ejhtHh73UsiaCTn2+OwqHiqVn55l2k9k6EiABEtCFwJMNGBauRo4cqTFZh7EQ4kjNmzdPlzrKLoPY9ghsD+vl7V3W/JidnR10ED9lyzSxu/Y2Vp+90GTW841trSx/u3C3/+LD/9xNN7E2sjkkQAIkUF4CTzZgZ86ceeaZZ0rK7dmzJ6YHS+ar58AmWVlZ3b17V8xEGoHtxUskoqOj4b7Rr18/BFrEZ/Xq1fAcQQL56sXMPI3lxlfbBPw0Oqy6m/3VhEzYsF/Pxpo5EzafBEjAzAk82YDB5Ki7HYq8YGPgmiheak0g1G+LFi327Nkj3MViGtJhYWHqhevXr3/u3LnTDz9wa+zatSuuzGehS51G2elQf/ft4zuE1fHCTuexayNn7byUX1BY9iO8SwIkQAKmSkAVXb7sj5+f3/nz54ODgzWKnT17tnr1J4ednTRp0tChQ1u2bNm6dWvMRmZmZsIXH6LgWw/JcM3A/rBGjRqJwt3dVbEn1HPEW0yAgLez3Q8jWs/5PWr5/qtfH7h69ta9Ra82RybhkAAJkIC5EXjyCAwRpD766KPs7Gx1NPfv358+fXrfvn3VM7WmcWzY3Llzp02bFhoainHV7t27BZ8OHPEcG8tJMK3MnpCJOL9TezdYOri5k63V0avJONY5MiblCc/wNgmQAAmYHIEn7ANDezGF2Lx5cyxljRs3rl69esi5fPkygmvAvTAyMlLdw9BgcPTZN2AwJQ1Q0ZX49Ld+iMCSmI2VxfR+DQe3CcBSmQHqZRUkQAIkIBUBfb7Pn2zAoOWNGzfGjBnz22+/CZuQ8C2JyFKwYbVr15aqDeWSo0+Dy1WR8gvDpf7fG8/uvqDamfCvFjVnDmgEl0Xlq00NSYAESEAgoM/3uU4GTKgmJSXlyhXVRlqcxezh4VGJ9PVpcCWqLVPV6JHlB65+vvsyNoo18nNdOrgFto7JVBfFkgAJkIC0BPT5Pi+HAZNWaX2k6dNgfepV8rOHrySOX3cqOTPX3dHmq5ebda5bVcnaUjcSIAESEAjo833+ZCcOUjYKAu2DveFh37SmGwInDvvu+KK9/yAcsFFoTiVJgARIoGIEaMAqxk2JTyFc/YZRYa+09kcA+7m//w3/jjQGnVJiR1EnEiABaQjQgEnDUSFS4MExe2CTz15obGtt+eelu/0XHY6KY9AphXQO1SABEpCYAA2YxECVIG5Qq4BNo8MwILuWmDlg8eFtZ+4oQSvqQAIkQALSEqABk5anUqQ1qakKOtUh2Pt+XsE7607N2H4xj0GnlNI51IMESEAaAjRg0nBUoBRPJ9vv32j9dpcg6Lby8LXB3xyLT38snIoCdaZKJEACJKA7ARow3VkZX0krS4v3nqm/7LUWznbWx68l91t4KOJGsvE1gxqTAAmQgDYCNGDaqJhW3jONqm0d1/4pH+e7aTkvf310dfh1HutsWj3M1pCAmRKgATOLjg+q6rxlbPs+javnFTyYtvXCpJ/O3M8tMIuWs5EkQAKmS4AGzHT79vGWOdlZL3q12QfPNsC84uZTtwcuPRKTlPV4EV6RAAmQgDERoAEzpt7SU1dEYR7Zqc6aEW28nGwvxab1XXjwr8vxesrk4yRAAiRQWQRowCqLfKXVGxbkteOdDjjcOS07/43vT8z/828Gnaq0zmDFJEACehCgAdMDntE+Wt0NQafavtY2AEGn5v/5z5urT6Zm5Rlta6g4CZCAmRKgATPTjreztpo5oPHcF5vaWVvuvRzfb9EhTCqaKQs2mwRIwDgJ0IAZZ79JpDXOwPx5TLuaHg4xyVnPLzm85dRtiQRTDAmQAAnIToAGTHbECq+gkZ/b9nEdOtWtmp1X+O6G0x9vu5CbX6hwnakeCZAACYAADRhfgyoeTrbfDWs1vlswWKw6cv3VFUfvpjHoFF8MEiABpROgAVN6DxlGP2wOm9yz3oohLV3srE/eSOm78BBCTxmmatZCAiRAAhUjQANWMW6m+VSPEN9t4zvU83VJSM/BOGzloWsMOmWaPc1WkYBJEKABM4lulK4Rtb2dNo9t91zTGvmFD2bsuIhVsazcfOnEUxIJkAAJSEaABkwylCYjyNHW+quXQ6f1DcG84tbTdwYuOXI9MdNkWseGkAAJmAwBGjCT6UopG4KgU290qL1uZFtvZ7vLcenYJfbnxbtSVkBZJEACJKA3ARowvRGaroDWtT1/fadDi1oe6dn5iNbxxe9RBYUPTLe5bBkJkICREaABM7IOM7C6vq72GIcNDauFehfuvfLGqhP3snINrAOrIwESIAGtBGjAtGJh5iMCttaWn/Rv9OWgpvY2lvv/ToCH/fnbqY9uM0UCJEAClUSABqySwBtbtc83q/nLmPYBno63Uu6/sPTIpohbxtYC6ksCJGBqBGjATK1H5WtPSA1XBJ3qWq9qTn7h/2088+GWcww6JR9tSiYBEngiARqwJyJigUcE3Bxtvh3a6t3uT1lYVFlzNGbQ1+FxqQw69YgPUyRAAoYkQANmSNqmUJelpcW73euuHNrK1d76VMw9HOt89GqSKTSMbSABEjA2AjRgxtZjytC3a32f7eM71K/mkpiRO/ibY98cvMqgU8roGWpBAmZEgAbMjDpb2qbW8nLa/Hb755v5YXPYzF8vjVt3KjOHQaekZUxpJEACZRGgASuLDu+VTcDB1mreS00/ea6htaXFr2djByw+HJ2QUfYjJe9++umnCPzx7rvvCreys7PHjh3r5eXl7Oz8wgsv3L2rUwSQpKSkmjVrQs69e/cEOfv27cOl+icuLu7jjz9Wz6lfv36FK121alWTJk3s7e19fHygsCBHQz7qcnJyEm7xLwmQgOQEaMAkR2peAvEdPbRd4Pq32vq42P0Tn9F/0eHfLsQBAYZl4dFJW0/fxt8y4necOHFi+fLlsAQitYkTJ27fvn3jxo379++/c+fOwIEDxVtlJEaMGCEIEeu9ULRZLSoqKvbhB5YGEho2bPgwI/bQoUOCzPJWOm/evA8++OD999+/cOHCn3/+2atXL0HO//3f/4nCkQgJCXnxxRfLUJu3SIAE9CFgrc/DfJYEBAItAz13vNNh3I+njl9PHvVDRK+GvmdupsY9PBWzupv99H4hzzSqroErIyNj8ODBK1asmDlzpnArNTX122+/Xbt2bbdu3ZDz3XffNWjQ4OjRo23bttV4Vv1y6dKlGHhNmzZt165dz8w/kJCrequzYy7i79nEwn/VraZe2Nraulq1x3LKW2lKSsqHH34IK/v0008LkkUDjFEjPkLmmTNnLl68uGzZMvXamSYBEpCQAEdgEsI0a1E+LvY/jmwzvH0gKPx24a5ovXAJV/sxayJ3n4/VAISZtz59+nTv3l3Mj4iIyMvLE3MwxRcQEBAeHi4WKJmAkZgxY8bq1atxDifuapwl/XLvzp5VfXv06HH48GHh2X/++adGjRp16tSB7YyJiUFmeSv9448/CgsLb9++DeOKecuXXnrp5s2bJRX75ptv6tat27Fjx5K3mEMCJCAJAY7AJMFIISoCNlaWH/YJ2Rx5+979PHUiQgDg6dsuNAvwsLWyhCM+Dmr5eeOGiIjI8GPHCtUCBGOZytbW1t3dXXzc19cXmeKlRiInJ+eVV16ZM2eOX03/VUc2qt+1cvL07DXWrtpTnvYWNXNOdenS5dixY23atMHaVb169TC/98knn8C6nD9/vryVXr16FQZs1qxZX331lZubG0ZjMJBnz56F5qICWMn78ccfMcco5jBBAiQgOQEaMMmRmrXA49eSNayXiONuWk6bWXuEy/y0hNjvJ/oO+m/j//6FnLirSacyr+/8YFf6hdN5BYWNp/8mGDlLC4vLd9JuHb1x6NO9sHn4z9KiCjKLEqq/FzcvyrGpuiW9zpoFB5MzH4sybONVE/9BOLxK3ho5GFbnyy+//OGHHwQFMOkHY1arVq2ffvrJwcFByNTxL6wXhokLFizo2bMnHlm3bh3mJP/66y9xJQyZmzdvTk9PHzp0qI4yWYwESKACBGjAKgCNj5RKID49u9R7ajdy464UZt2LXTWhOO9BYc7NC2kR231emvGgID819Z6lffFKUnZ6sq21C8Z0ak8/St65cDwv4cbPkY+m6W4ueNUtbJB7x8GPClWpAq1at24tumwItzDOwxTflStXMH7Kzc3FKpo48oPro8Y6mbq06tVVi3lw0BAyq1at6u3tLcxGisUwf9i3b18MH8UcJkiABCQnQAMmOVKzFoiVsDLav25km9a1veAomJrW/tqH/8Le58LCKphBHDd6ZHDdumPemeRbw6/ZL5+83zS/Z5/OhQ8eXPn77z6fJSyYMKhRs5Z4Cjmqv4UPCvDggypI3Oyy7n72fSSuJmZ8t2VP0q6vqg3+zNpd01vk4p20yFOnBMMjqgcXkujo6Ndff71FixY2NjZ79uyB1z7uwnER1igsLEwsqZFo3769UAwLYEgkJycnJiZiMCcWu3btGgZk27ZtE3OYIAESkIOAIQzY4sWLsUqBlYamTZsuXLgQv4U1WvLLL79gRQG/hTEz89RTT02ePBlfKxpleGkUBHAGJnwO4bUhrHuJOltUqVLNzR7WS5gJrOrpXtUzVLzr5ursV82nW7uWyIFD/Gcf/6dBYA1XV9eZU8bDkLz2XHexpGaivsozHh8Ytl9P/I2QVjZe/sLoLe3EVmt3XxvvgAf5ubOnfZ0e+dfked9PmDhp4ID+MDZw0J8+fbqVlRWW0LCOhUonTZrk6emJSsePV1Vaht8jxm39+/efMGHC119/jfJTp06Fs0nXrl0FTfB35cqVMJa9e/cWc5ggARKQg4DsBmzDhg34aoAzMZYc5s+fj3UC/MIVduSI7cEXB3bV4FsAy+A7duwYPnw4CqivKIglmVA4AdgneMzD5xAWS7RhSOODfNx9ov5YqYKbBwZDcNDAO7BkyZInPoICkDysXeCUbx6VfVCYl7L324KMJDt7B5uqgb6DZm6K80j9M3LV6jXZGamY9+vQoQMc9JHAM+WtFE6P2DoGF0qo2rlz5927d2MMJ9SNFTL4iQwbNgzW8ZE2TJEACchAwELuEHawW61atVq0aBGUx79tf39//MIt2zurefPm+Gr473//W1p709LS8KsZ23fw+7e0MsyvRALwmP9k+8XYh4HqS9sHJrmGpdWbk1/wc8Tt5QeibyRloVJHW6tXWwe82bEOBoWS60CBJEAC5SKgz/e5vAYMa+OOjo6bNm0aMGCA0CT4ZWG1fOvWrVpbCGu6d+/e5557bsuWLVhaVy+D3+P4CDloMAwhDZg6H6WlMacHj0R4T2BVDPOKuoy9JGlCGfXi1s5zsUv2RV+KTUNdcOh/oYXfW52Cansz2pMk7CmEBCpCQB8DJu9GZixuFxQUqPtilbatB9YIIQwwhYixF9bJNKwXqMyePRujLuED61URTnzGgARgscKCvPqH+uGv/tZr9OjRRTEuHvuDzJINKqNe3OrXtMbOdzp8N6xVq0CP3ILCdcdvPv3FvrFrIy/cSS0pSvdKSz7LHBIgAQMQkHcEhqVyPz+/I0eOiD5d7733HmLcYUupRtswu4idOnAMgzMYJg8xAsPOU/UyHIGp0zC3dHx8PH6mabQaE8gai6kaBcq+PHE9eem+6L2X44VinetWHds1GINF8Sk5KhWFM0ECJCAQ0GcEJq8TB/bHYClbPaB4aTtssBgeHByM9oSGhl66dAnjLQ0DZlf0YZebJwEYKn1slVZorQI9Ww3zxHQizNiOs3f2/52A/1rW8hjTJahbfR8EKZajUq2aMJMESKBiBOSdQsSUIDbZYFAlKIdhFtLiaKw0jVFMXO4qrQzzSUASAg2quy54pdneyV1eaR2AVTEEVBzx/cneXx1EHP38gkJJqqAQEiABmQjIa8CgNHzoEW78+++/x7hqzJgxmZmZ8JJH/pAhQ7CBRmgVxlsIkIopRJT54osvEO/ntddek6nBFEsCJQkEejvNHtj40JSuozrVcbK1uhyXPmH96W5f7F9z9EZ2XkHJ8swhARJQAgF5pxDRwkGDBiUkJOCoC2xkxvQgdswIPh0IdoBpQwEBrNrbb79969YtRKXDbrA1a9bgKSXQoQ5mRcDH1X7qsw3e7hK8Ovz6ysPXYpKzPtxy/qs9/4zoUHtwmwAX++KdXmbFhI0lASUTkNeJQ6aW67PoJ5NKFGtiBLJy8zecuLniwNU7RbvZXO2th4QF4rAYL2c7E2spm0MClUtAn+9zGrDK7TvWrmgCufmFWAxbtj86OiETitrbWL7cKmBkpzp+7uULYK/oRlI5EqhUAjRglYqflZs6AQQL/v1iHHZAn72l2i5mbWmB/W1jutQJ9nEx9aazfSQgOwEaMNkRswISQJiYw1eSluy7ciQaQYOrWFhU6RniiwWzpv6Pjt8kJRIggfISoAErLzGWJ4GKEzgVk4KtY79fvCuIaB/sBTPWLsgLW8cqLpRPkoC5EqABM9eeZ7srj8A/d9OX7o/eevoOQixCC4zDxnQOwpgMZ0lXnlKsmQSMjwANmPH1GTU2DQK3UrLgqbj+xM2cfNWu52Af59Gdg/qH1rCxkn2HpWkAZCtIgAaM7wAJVCaBxIyc7w5fWx1+Iz07H3rAR3Fkx9qDWgU42PJIsMrsF9ZtFARowIyim6ikiRNIy8778WjMt4euwZ6hqV5Ottg39npYoJsDd0CbeNezefoQoAHThx6fJQEpCSD01MaIW8v3R99KuQ+5znbWg9sGIJYHzkWTshrKIgFTIUADZio9yXaYCgEEAt5xNhbOilF309EmW2vLF1vUHNUpKMDL0VSayHaQgDQEaMCk4UgpJCAtAeyAxnlj2DoWGXMPknGiZt8m1XFcS/1qrtJWRGkkYLwEaMCMt++ouekTwA7oY9eSEcjjwN8JQmufru/zdtegFrUeHZ5p+hTYQhIohQANWClgmE0CSiJw/nYqJhV3no99oNo5VgWnP7/dJQgnQXMHtJJ6iboYmgANmKGJsz4SqDCBqwkZy/df/eXUrbwClR1rWMMVk4q9G1XHBGOFZfJBEjBeAjRgxtt31NxMCcSm3v/m4LW1x2LuFx2YWdvbCWdpPt/cz86aW8fM9JUw22bTgJlt17Phxk0gJTN31ZHr+C/1fh5a4utqN7JjnVdaBzjZyX7SrHGDo/YmRIAGzIQ6k00xPwKZOfnrjsesOHj1bppqB7S7o83QsMBh7QI9nGzNDwZbbHYEaMDMrsvZYNMjkJNfsDlSdXjm9aQstM7R1gpDsTc71q7uxsMzTa+32aJHBGjAHrFgigSMmgBi2+86H7vkr+iLsWloiI2VxcBmNUd1rlOnqrNRt4vKk0BpBGjASiPDfBIwSgLYOrb/7wRsHTt+LRkNwEFjzzZS7YBu5OdmlO2h0iRQOgEasNLZ8A4JGDOBiBvJGI3tuRwvNKJT3arYOtamtie3jhlzr1L3xwjQgD2GgxckYGIELselYQf09jN3is7OrNI8wB1nQHer78PDM02so82zOTRg5tnvbLV5EYhJylp+IBqh7nOLDs+s5+uCSUUEV7Tm4Znm9SKYWmtpwEytR9keEiiNQHx6No4cw8FjGTmqwzP9PR3e6hSEUPf2NtwBXRoz5iuaAA2YoruHypGA5ASw8fmH8OsrD19PzsyFcG9nOxw59lrbABd7Hp4pOWwKlJcADZi8fCmdBJRJ4H5uwYYT2AF97fY91eGZLvbWQ8JqDW9fG/ZMmQpTKxIoSYAGrCQT5pCAuRDIKyjcevoOdkBfic9Am+2sLV9u5T+yU52aHjw801zeAaNuJw2YUXcflScBCQjg8MzfL95duu/KmVupEGdtafFcaI0xnYOe8nWRQDpFkIBsBGjAZENLwSRgVASwA/pIdBJ87g9dSRQU7xni+3bX4FB/d6NqB5U1IwI0YGbU2WwqCehC4MzNe0v2Xfntwl2hcLsgL2wdax/sxR3QutBjGUMSoAEzJG3WRQJGQ+BKfPrSfVe3nr6dX7QFuklNNwTy6BlSjTugjaYLzUBRGjAz6GQ2kQQqSgA+iisOXF1/IiY7rxAygqo6je4c1D/Uz9basqIi+RwJSEaABkwylBREAqZKICkjRzg8Mz1btQO6hps9PBVfbhXgYMsd0Kba58bRLhow4+gnakkClU4gPTvvx2MxiOWRkK46PNPTyXZ4u8AhYYFujtwBXemdY6YK0ICZacez2SRQMQLZeQU/R95avv9qTLLq8EwnW6vX2tZCLA8fV/uKCeRTJFBhAjRgFUbHB0nAfAnkFxT+ei4WPveX49JBwdbK8l8ta47qVKeWl5P5QmHLDU6ABszgyFkhCZgKAWwd23s5HodnRtxIQZssLar0bVIDce4bVHc1lSayHYomQAOm6O6hciRgFARw+jO2ju2LShC0xXljMGOtAj2NQnkqabwE9DFg9KM13n6n5iQgJYHWtT1XDW/96zsdcMYYxmEYlr24LPylZeF/RcVjlFaumpYuXdqkSRPXok9YWNiuXbvUH4e03r17Y0v1li1b1PM10qtWrUIZjU98fPHh1D/++GPTpk0dHR2rV6/+xhtvJCUlaTzOS3MgQANmDr3MNpKArgQa1nBb9GrzPZO7vNLaH6tix68nD//uRJ8Fh3AedIFwIHSRJKTDo5OwRRp/1fOFamrWrPnpp59GREScPHmyW7du/fv3v3DhgqjB/PnzYZbEy9ISgwYNilX79OrVq3Pnzj4+Pih/+PDhIUOGjBgxAmI3btx4/PjxkSNHliaH+SZMwKK8v62UwEKfIacS9KcOJGAUBOJScXjmVbjdZ+UWQOFaXo6jOgW90MLvr8vxn2y/GJuaLbSiupv99H4hzzSqXlqjPD0958yZA3uDAqdPn+7bty8MG0ZOmzdvHjBgQGlPqecnJCT4+fl9++23r7/+OvLnzp2LQV50dLRQZuHChZ999tmtW7fUH2HaWAjo833OEZix9DL1JAFDE6jmZv9Bn5Aj73eb2L2uu6PNjaSs/2w+12rmn6PXRIrWCzrBzo1ZE7n7fGxJ/QoKCtavX5+ZmYmJRNzNysp69dVXFy9eXK1atZKFy8hZvXo1Zgv/9a9/CWUg7ebNmzt37sTv77t3727atOnZZ58t43HeMlUCNGCm2rNsFwlIQ8Dd0XZC96dgxj7qG+LrYpdWFMhDXbSwPoYxmfpc4rlz55ydne3s7EaPHo2RVkhICB6ZOHFiu3btMKOo/rguaYy9YPkcHByEwu3bt8caGOYYbW1tYQvd3NxgFHWRwzImRsAQBgzvVmBgoL29fZs2bTBbXZLgihUrOnbs6FH0g0Qw/gAAHEtJREFU6d69u9YyJZ9iDgmQgMEIONpaY6fz3Bebaq0RNgxjMvgxinfr1auH2cJjx46NGTNm6NChFy9e3LZt2969e7EAJpbRMREeHn7p0iVhBlJ4BNImTJgwbdo0LLPt3r37+vXrMJM6SmMxUyIg+xrYhg0bsNy6bNkyWC+8u1hxjYqKElZiRY6DBw/GTyr8NIORw1w2fq9hbRZT3mIBjYQ+c6YaonhJAiSgOwF4bUxYf7q08k1qur7Q3B+HtgRVdVZ308Cv0qCgIIyfFixYYGlZ/KMZs4tI45frvn37ShMo5MN0RUZGnjp1SiyGlbDs7Gx8mQg5hw4dgpw7d+5gXU0sw4SxENDn+9xa7kbOmzcPDkLDhw9HRTBjv/7668qVK99//331ejEbIF5+8803P//88549e2D2xEwkcoo+Qg4arH6LaRIgAcMQ8HEpK9bU2VtpZ2+pvA19XOxwAlm7YG/8renhWFhYiH++n3zyyZtvvinq2bhx4y+//LJfv35ijtZERkbGTz/9NHv2bPW7WEuztn703WVlpYpHbIz+aOqNYroCBB69BBV4+ImP5ObmYow/depUoSR+cOG3GCYEyngQr2ZeXh7cljTK4A3GPwCNTF6SAAkYkgD2isHnEF4bGvvC4BTv5Ww7tF3g0atJJ6+nRO1YHlOn5SbXqoW5962vHb65b98nS9baOHs0etx3IyAgoHbt2mXrjymc/Pz81157Tb0YzB5+FsMREb718LR/9913W7duXaNGDfUyTJsDAXkNWGJiIiYKfH19RZRIX758WbwsmZgyZQpeRNg5jVuwgpMmTRIyMQLz9/fXKMBLEiABuQlYWVrAYx4+h7BYog1DGp+ZAxrBk358t6cQKfjFqDWH/1yQkJxQxdbRtmqgz4szVl53WTnzz/rVXNoFeWOOEYZQR1XhvjFw4EB3d3f18sOGDUtPT1+0aNHkyZNxC1vNsPSgXoBpMyEg7xoYZqWxlHXkyBHBiRZM33vvvf3792NpVytfbH78/PPPMSeObfxaCwiZ+syZliGWt0iABHQhAI95HfeB4fQWeHYcvpJ0JDpRCBksyIchxPHQ7YNUc4zNa3nY2/BMMl3Am2YZfb7P5R2BeXt7Y3oaGzVE8EiXtgUEmxNhwP7888+yrZcoigkSIIFKIYCRVo+QarBM8enZWBXDcAoGSasmLvY2TzfwxX+4m5iRgwlGwZhhS9mpmHv4b9FfV3AwdMtaHu2LFswa+7lZWxnCNVqrtsw0OgLyGjDs0mjRogU8MoT99ljLRXrcuHElMWHg9b///e+3335r2bJlybvMIQESUBQBWKywIK9yqeTtbIc49/gPT91KyToSnXTkSiL+Xtr0xfoL+9YXyYIZtLS0gPAB/xq07vtv1V0Zy1UXC5sJAXmnEAERa7DYBbJ8+XKsssKNHg5FWAPDShicDDG7KDgXYf4aWzrWrl0LZ3qBO7ZA4lNaH+gz5CxNJvNJgAQMTwCug8cvXtt/ISYyJgUDsoycfEEHS1tHX1+ftnW8MDLDTKO/pwONmeF7xzA16vN9Lu8IDO3HbnnEMYN9iouLCw0Nxa5DwacjJiZG3BECbyL4K4pxYvDU9OnTP/74Y8PgYy0kQAKVRQBmqU3DOvgPCiCQx8U7aYejEw9fSTxxPTkxI3fH2Vj8h1t+7g5w/YAxC6vjxWOjK6uzFFiv7CMwOdqsj8WWQx/KJAESkJZATn7B6Zh7qmnG6ESMzPLVAuE/5eOssmRBXhifuTnYSFsvpRmegD7f5zRghu8v1kgCJFAOApk5+RiQwZhhZHYxNk08mwyOI4383AS//Ja1PB1s6cpYDqrKKUoDppy+oCYkQAIyEkjJzIUro8qYRSdeTcgUa8LRZc0C3AVXxqb+7jZ0ZRTRKD5BA6b4LqKCJEACUhOITb2P4zQFv3z1410cba3g2a/aZBbs1aCaK9wapa6Z8qQkQAMmJU3KIgESMC4CcGW8npSFCUbYM6yZpWTlifp7ONpgtQzTjNgxXdvbia6MIhnlJGjAlNMX1IQESKAyCRQWPrgUl1Y0MkvEVuvMorOkBYUQxRHGDCMzzDTirM7K1JJ1qxGgAVODwSQJkAAJFBHIKyg8e+se5hgxOIMrY25BoQimjrcTJhgxMoNfvoeTrZjPhOEJ0IAZnjlrJAESMCYC93MLTt5QuTIi/Me526miW76FRZWQ6q7C4S+tAz2d7GTfGmtM1AyiKw2YQTCzEhIgAZMgkHo/71iRKyMWzP6+myG2ydrSItTfHceYtQ/yCg1wt7OmX77IRsYEDZiMcCmaBEjAhAkgHrHK9QPTjNGJt1Luiy21t7FsFegpbDJrWMOttGjFYnkmKkyABqzC6PggCZAACRQTiElCiOHEw9FJ4dGJCGQlcnG1ty6OyhjsFVTVma6MIhlJEjRgkmCkEBIgARJQEYBfPqYW4fqBNTNMNqY/DDGMWz4udqoFs6JNZjU9HMlLfwI0YPozpAQSIAES0EIgv6AQTh8q74/oxJPXU3LyH7ky1vJyFIwZvPNxWIyWh5mlAwEaMB0gsQgJkAAJ6EcgO68Ax75gwQzG7MytVITPF+XVr+YibJduU8cTx3iK+Uw8kQAN2BMRsQAJkAAJSEkgPTsPG6VVURmvJF6OSxdFw92jSU2EGFbtmG5ey8Pehq6MIhvtCRow7VyYSwIkQAIGIJCUkRN+VRWVEd4fCGol1mhrbdmylodw+EsTPzdrhhgW0aglaMDUYDBJAiRAApVH4FYKXBlhyVQjs/j0HFERFztrzC6GqQJZedXzdaEro0iGBkxEwQQJkAAJKIIAXBmjEzJVfvlFUYbTsvNFtbycbFVRGYNVIYYDPB3N3JjRgIkvBhMkQAIkoDgCcPe4eCcNe6UxODtxLfl+XoGoop+7A8ZkggOIj6s5hhimARNfBiZIgARIQNEEcvMLT99EiGEYM1WI4Xw1V8anfJxVfvnB3m1re7k5mosrIw2Yot9XKkcCJEACWglk5uSfuJ6sWjCLTrxwJ+3BQ7d8nMHZyA+ujKo5RkS0crA1ZVdGGjCt7wYzSYAESMBoCKRk5h67pnJlhDG7mpAp6m1jZdEswKPoGDOvpv7uNibnykgDJvY1EyRAAiRg9ATiUrOLvD9UO6ZjU7PF9jjaWrWu7QljBh8QnAJjiZGa8X9owIy/D9kCEiABEihBAK6M2FgGMyaE/0jJyhOLeDjawIyp/PKDvGp7OxmvKyMNmNinTJAACZCAaRIoLHyAkB9FI7NEBAHJzH3kyljdzV7ll18UYri6m4NxtZ8GzLj6i9qSAAmQgF4E8goKz966JxxjFnnjXm7BoxDDdbyd2hX55YfV8fJwstWrGoM8TANmEMyshARIgASUR+B+bkHEjRRhk9m5W/dEt3wLiyoNqrmqNpkFe7cO9HSys1ae7iqNaMCU2S/UigRIgAQMSiD1fh4OMBMOf8GRZmLd1pYWof7usGTwy28W4G5nrSC/fBowsZuYIAESIAESUBGIT8/GDjNhmvFWyn0Rir2NJfaWYZMZBmcNa7ghfL54q1ISNGCVgp2VkgAJkIBxELiZnFUU+0M1OEvMeBRi2NXeum2d4qiMwT7OleLKSANmHO8QtSQBEiCByiUAv3xMLQqbzDDZmJ7zKMSwj4udKpBVkStjTQ9H/fU8cODAnDlzIiIiYmNjN2/ePGDAAK0yBQP2ww8/rF69GoWTk5NPnToVGhqqtbBGpkKX9TS05CUJkAAJkID+BDDGqlfNBf8Nb187v6DwPEIMFwXLR0QrHP6y5fQd/IdaECNfCDEM73xvZ7vS6kWQYjj0Y67Sx8UeO6w1ZiMzMzObNm36xhtvDBw4sDQJYn5WVlaHDh1eeumlkSNHiplPTFjAID+xkNIK6DPkVFpbqA8JkAAJVDqB7LyCyJgU4RizM7dSYZlElepXcxE2meE8Mxf7RyGGd5+P/WT7RTFQCPaiTe8X8kyj6uKDYgJW84kjsNTUVFdX1+vXr9euXZsjMBEdEyRAAiRAAk8gYG9jVRQ72Htyz3oZOfnHi6IyYsHsUmwadk/jv+8OX8cAq7GfG0Zm2DGNhbQJ608/snJVqiD81Zg1kUtfa67Vhj2h+ore5hRiRcnxORIgARIwRQLOdtbd6vviPzQuKSMnXPDLv5KIoFY4CAb/Lf4rumS7YczgzogxWY+QahpziSULS5VDAyYVScohARIgAVMj4OVs17dJDfyHht2+d/+I6hizpL8ux9+7/ygqo9hm2DDMKGJVDFOOYqasCUtZpVM4CZAACZCAaRDA4dEvtvT/clDoJ881LKNF8Oko4660t2jApOVJaSRAAiRg4gR8XO3LaCE8Esu4K+0tTiFKy5PSSIAESMDECcBjHj6H8NpQd+JAm7EGVs1N5U8vtD8jI+PKlStC+tq1a6dPn/b09AwICNBKB9u/rl69eueOyok/KioKf6sVfbQWFjM5AhNRMEECJEACJPBkAvDRgMc8yqkHoRLSyBc9OE6ePNms6IOSkyZNQnLatGmlSd+1axcK9OnTBwVefvllpJctW1ZaYTGf+8BEFEyQAAmQAAnoSkD3fWBlS9RnXy+nEMtmy7skQAIkQAJaCGC/Fzzmy4jEoeUZqbNowKQmSnkkQAIkYB4EMFtYLo/5gwcP9u7dW0I2sq+BLV68ODAw0N7evk2bNsePHy+p+oULF1544QWUQbiR+fPnlyzAHBIgARIgARMg0LJlS7hyaHxg1SrcNHlHYBs2bMDaHdbiYL1gnHr16gX3Eh8fH3V1EcOxTp06L7744sSJE9XzmSYBEiABEjAlAg4ODsHBwRotwhqYRo7ul/KOwObNm4fQwsOHDw8JCYEZc3R0XLlypYZyrVq1Qsh9uJ3Y2ZUa81jjEV6SAAmQAAmQgIwGLDc3F4e7dO/eXaBsaWmJdHh4eMWg5+TkwFCLn4oJ4VMkQAIkQAImQ0BGA5aYmFhQUODrq4oIKXyQjouLe3hVvv/Pnj3b7eHH39+/fA+zNAmQAAmQgMkRkNGASctq6tSpODBG+Ny8eVNa4ZRGAiRAAiRgdARkdOLw9va2srK6e/euCAVpBAcRL8uVwAoZF8nKRYyFSYAESMC0Ccg4ArO1tW3RosWePXsEgoWFhUiHhYWZNlC2jgRIgARIwDAEZByBoQHwoR86dCh8/1u3bg03+szMTHgkIn/IkCF+fn5Y1kIavh4XL14UErdv38YWAWdn55KulijADwmQAAmQAAmIBOQ1YIMGDUpISEAAR/huhIaG7t69W/DpiImJgVOioATCDyNuo5CeW/Tp3Lnzvn37RBVLJh48UAVBhkdiyVvMIQESIAESMCICwje58K1eXrWNMpjvrVu36IhY3p5meRIgARJQLAG45tWsWbO86hmlAcNyGsZtLi4uiD5V3gaL5WH2YQVBzdXVVcxUeMLodKbCcr9RJCw3YcgnZFkhY+yVnp5eo0YNcVpO9+rknULUXY9ylUQ7K2CrtVYB62VEBkxogtHpTIW1vnsSZpKwhDBLE0XIpZHRPx9bfCsmREYvxIopxKdIgARIgARIQBcCNGC6UGIZEiABEiABxRGw+vjjjxWnlKEUwj7rLl26WFsb0zyq0elMheV+nUlYbsKQT8gGgFyBKozSiaMC7eQjJEACJEACJkaAU4gm1qFsDgmQAAmYCwEaMHPpabaTBEiABEyMAA2YiXUom0MCJEAC5kKABsxceprtJAESIAETI2AWBiw5OXnw4MHYh+ju7j5ixIiMjAytvThq1KigoCAHB4eqVav279//8uXLYjGE/FD/rF+/XrwlR0J/hRFtsk+fPo6Ojj4+Pv/+97/z8/Pl0FOUqYvCKDN+/Ph69eqBcEBAwDvvvIPT3UQJ6niRVgLhshVWIGHA/Prrr+FYi1cdDO/duyfiRSIwMFAd8qeffqp+V460Lm8F6i1DZx0lSKW8jtVlZ2ePHTvWy8sLYcdfeOEF9ROj1AnL9BovXrwYXWlvb9+mTZvjx49rbfvGjRvr16+PMo0bN965c6dYBjEvEJm2evXq+DfYvXv3f/75R7xlrAk0yeQ/zzzzTNOmTY8ePXrw4EHEuX/llVe0Nnn58uX79++/du1aREREv379EGgK3/tCSfTud999F/vwc//+fa0SpMrUU2Go3ahRI7ygp06dwuuLg9lwHKhUummVo4vC586dGzhw4LZt265cuYKDdZ566in84xelKZBwGQorkzBgfvnllzjkQTjnISUlRcSLRK1atWbMmPHwFY7Fzzj1u3KkdXkrUG8ZOusoQSrldaxu9OjR+HLAO3zy5Mm2bdu2a9dOVEDu1xg/7HBM1cqVKy9cuDBy5Ej8Iof5FGsXEocPH4bT/+eff45TPj788EMbGxu8ycIt/GpBzIstW7acOXPmueeeq127ttxfZRq6SX5ZRXKJShMonNVy4sQJQbFdu3bhlxHObSlbT3Qw3kV81QrFkN68eXPZj0h1V3+FYbQQbQsnAAgqLV26FD/Jc3JypNJQQ07FFP7pp5/wTzEvL0+QpnzC6gornPBff/0FniUNGEyFRt/Jd1net6KkzuWVoGdbdKwO41qYBAxxhOouXboE1OHh4cKl3K8xzqXC4E+oq6CgAPED8WNFo+EvvfQSZl/ETAzUMLeES4SQxXnCc+bMEW6hITgieN26dWJJY0yY/hQi3i38TsGZZHi38MG4BF/ux44dEy61/sW5ZRhv4eeJesx7vDcYyuAFws8f9LTWByXJ1F9hSMDUgXByDVTq1asXopHiJ5sk6pUUUgGFIQTzhzCr6rvIlUxYQ2GjIFyyp/ADHBNfOL0I32JyzypX7K1Q11l/CerSnpjWsTpMz+BXF75GBIGYqcN8OJ4V5cv3GuPoRNQuVo3vMaTVqxZ0QI5YBjn45y+UwdwSftSKtzAUg20r+bjYEKNIGFMQiooBRZ9hHUh8Ft+Ynp6eyBRz1BNLlix57733YMCwVPPHH39giCDcxdxLt27dsKT0+++/v/3225h+wRKO+oMSpvVXGBJE6wXFhHRpTdZf83IpLFSXmJj43//+96233hJrVyxhrQorn7AIVkzgjW3evDle/iNHjmBKGXOJ8+bNE+9KnqjAW6Ghg/4SNASWfaljdSiGrwX8Jhal4d8XMoVLWV9j/KvBqEvjn7b6Ur2gA5TRKCOoJ/zVektsi9ElTGEE9v7772usnYqXJXu37B6CrwfWjbASVrduXYzEsVorlP/oo4/at2+Pn65TpkyBhcMP2LLllH3XAAqXrUB570qoMKrGcBBTHCEhIephzBRLuDSFy8uw7PLSEtZaF45Hh39HkyZNsITzxRdfLFy4ELPKWkvqmGkAnXXURMdiBlBY2tdYx3aZczFTGIFNnjx52LBhWnuxTp06mPaNj48X72LmBL5GyBRz1BMYVuMD/wKszXp4eGDdCx4f6gWQxrgbowf848cMssYtHS/lVhitU3dPErykSmuyLjpLqDAO/sFSOc5yA1usJWitXVGEtSqsZMJakWpkgjD+IVy/fh0zDRq3dL+U8K3QWikg6/4vV6sEjUxJFIZWmMrDApI4CMO/L63/uPR/jTX0xxIGvDPUnR61Vg1ltJYRlMQteCEKkpEODQ3VqMXILo1x4a5cOgtrs/AXEp767bffdHHiwNgLnqZYCStZ18yZM2HbSuZLlaO/woKLAd5OQSV4V2K1CS2SSkMNOborjHUv/DLo3LkzJmk1hKhfKodwaQorlrCAsaRDhDpepNesWYMVFPyS08iX8FL3t0KotKTO5ZWgp/I6Vic4cWzatEmoTpjjwUpSydrleI2xBj9u3DihLkwn+vn5aXXi6Nu3r6hPWFiYuhPH3LlzhVt4t03AicP0vRDRW/jJj9k/OG4cOnQIoyvRjf7WrVv4BYp8lImOjp41axbs3I0bN+CHCjd6rBYINgCe3ytWrIArKrZNYJEMK2HYSyG+H3Ik9FRYcPLu2bPn6dOnd+/ejW1tBnCjfyJh/IPBb1J4l8C3U3TmhqoAqEzCZSisTMIgCbCYA8frit/RBw4cQDopKQn5WPeCCyLeB7znsF54JYYMGSLHq6suU5fXuAydcas0Ceq1SJgurTr1LwpUhzlYOG7s3bsXXxcwD/gIOhjgNYYbPazOqlWrYG6xhIxRIFa2UPvrr7+OCVJBDXx9YaUfhgoektOnT9dwo8cjW7duPXv2LLa60o1eIKb0v/g3DKOFXYcYiAwfPhyTQoLGcMvBv3P89MMlHOt79+4Ndw/0N457fvXVV/HbSigGz3sMtPG4k5MT9pMtW7YMv32EWzL91VNhaIXZITQHg0hMO2DmRPRWr0SFhZ/YGhMU6AKopEzCZSisTMLQCl9YGoSFWQR4r+HXA6bHsbm1QYMG+K0m34gcaggfXV5jlCxNZ9wqTUJxBVL/r7Tq1L8oUCf2TsGTC9Mw+C37/PPP40eDoIhhXmMsXsJ8wpEEozHsbRWqxqzG0KFDhTT+YssHVvFRpmHDhr/++quYD096rNLBjwNW8Omnn46KihJvGWmCx6lo/HvnJQmQAAmQgHEQMAUvROMgTS1JgARIgAQkJUADJilOCiMBEiABEjAUARowQ5FmPSRAAiRAApISoAGTFCeFkQAJkAAJGIoADZihSLMeEiABEiABSQnQgEmKk8JIgARIgAQMRYAGzFCkWQ8JkAAJkICkBGjAJMVJYSRAAiRAAoYiQANmKNKshwRIgARIQFICNGCS4qQwEiiTAI5NEM/6ERKIv4cnAgMD58+fr/EoCuD0d/VMPD5gwAAxB1ElERoNkc8QGQhx7RAvDdH5xLtMkIDJEzCF41RMvpPYQFMiAIuF+IRii2B7xHS5ErBVCGfXqFEjnDaAc4ER4RNBWhH3EqfZlUsOC5OA8RKgATPevqPmRkkAFkvr8VHlagxCr2I0hqMVDh48iINRhGcRcnrChAnlksPCJGDUBGjAjLr7qLyZEsDBKBcuXFi7dq1ovQQQ4imLZsqFzTYzAlwDM7MOZ3Mrm8COHTtwNI/4wckmFdAIR9PhKcwcVuBZPkICJkOAIzCT6Uo2xDgIdO3adenSpaKuODdVTOuewBSi7oVZkgRMlQANmKn2LNulUAI4FjU4OFgX5VxcXHAqtHpJnGePQymRg+MK8RdnruIgbPUCTJOAWRHgFKJZdTcba0wE6tWrh5OURY1xDviZM2cE0wV/jZCQkC+++AJn7IoFkICFU79kmgRMmwBHYKbdv2yd4gjk5OTExcWJallbW3t7e+Py9u3bcM0Q82vVqjVp0qQRI0ZgoatHjx6ZmZk4Sz4lJeXNN99EGWwRgy9+9+7dO3bs+MEHH6BMRkbG9u3bf//9d7rRiwyZMH0CmEznhwRIwDAEhg4dqvGdgmEWqoa50sj/4YcfkP/jjz+2aNECc4m+vr7PPvssRmDqekZFRQ0ZMqRGjRq2traQgI3MkZGR6gWYJgHTJmCB5mn8y+ElCZAACZAACSifANfAlN9H1JAESIAESEALARowLVCYRQIkQAIkoHwCNGDK7yNqSAIkQAIkoIUADZgWKMwiARIgARJQPgEaMOX3ETUkARIgARLQQoAGTAsUZpEACZAACSifAA2Y8vuIGpIACZAACWghQAOmBQqzSIAESIAElE+ABkz5fUQNSYAESIAEtBCgAdMChVkkQAIkQALKJ0ADpvw+ooYkQAIkQAJaCPw/m+nikXYVrPgAAAAASUVORK5CYII="
}
},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Prescriptors\n",
"![image.png](attachment:319f2a83-efbb-4017-83fb-c47e2e335906.png)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"PRESCRIPTOR_LIST = [\"1_1\", \"34_78\", \"50_67\", \"40_45\", \"30_28\", \"28_40\"]"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# User Interface"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"sample_context_df = None\n",
"\n",
"out = widgets.Output()\n",
"\n",
"\"\"\"\n",
"Submits context and creates pie chart\n",
"Updates sliders for pie chart accordingly\n",
"\"\"\"\n",
"def prescribe(b):\n",
" prescriptor_model = load_prescriptor()\n",
" prescribed_df = run_prescriptor(prescriptor_model, sample_context_df)\n",
"\n",
" # Get other col back\n",
" data = prescribed_df.iloc[0].tolist()\n",
" other = fig[\"data\"][0].values[-1]\n",
" data.append(other)\n",
" data = dict(zip(CHART_COLS, data))\n",
"\n",
" for feature in CHART_COLS:\n",
" # Unlock everything\n",
" if feature in LAND_USE_COLS:\n",
" ticks[feature].value = False\n",
"\n",
" sliders[feature].unobserve(update_presc_plot, names=\"value\")\n",
" sliders[feature].value = data[feature] * 100\n",
" sliders[feature].observe(update_presc_plot, names=\"value\")\n",
" \n",
" # Clear figure and re-plot\n",
" fig[\"data\"] = (fig[\"data\"][0], )\n",
" fig.add_trace(go.Pie(values=list(data.values()), \n",
" labels=CHART_COLS, \n",
" domain=dict(x=[0.5, 1]), \n",
" title=\"Prescribed\"), row=1, col=2)\n",
"\n",
"\n",
"\"\"\"\n",
"Locks a slider so it isn't affected by the sum to 100 computation\n",
"\"\"\"\n",
"def lock(change):\n",
" if change[\"new\"]:\n",
" locked.add(change[\"owner\"])\n",
" else:\n",
" locked.remove(change[\"owner\"])\n",
"\n",
"\n",
"\"\"\"\n",
"Real-time updater for prescribed pie chart\n",
"\"\"\"\n",
"def update_presc_plot(change):\n",
" with fig.batch_update():\n",
" if len(fig[\"data\"]) > 1:\n",
" owner = change[\"owner\"]\n",
" \n",
" # First compute what percentage is locked, count locked/zero sliders, and see if this slider is locked\n",
" locked_sum = 0\n",
" zero_count = 0\n",
" owner_locked = False\n",
" for feat in sliders:\n",
" if sliders[feat] != owner and (ticks[feat] in locked or sliders[feat].value == 0):\n",
" locked_sum += sliders[feat].value\n",
" zero_count += 1\n",
" # TODO: this is yucky\n",
" if sliders[feat] == owner and ticks[feat] in locked:\n",
" owner_locked = True\n",
" break\n",
" \n",
" # Block update if everything else is locked/0 or this is locked\n",
" if owner_locked or zero_count == len(sliders) - 1:\n",
" owner.unobserve(update_presc_plot, names=\"value\")\n",
" owner.value = change[\"old\"]\n",
" owner.observe(update_presc_plot, names=\"value\")\n",
"\n",
" else:\n",
" # Add locked percentage to old and new because we don't factor\n",
" # them in to the 100% in our calculating the new value\n",
" old = change[\"old\"] + locked_sum\n",
" new = change[\"new\"] + locked_sum\n",
"\n",
" for feat in sliders:\n",
" slider = sliders[feat]\n",
" tick = ticks[feat]\n",
" if slider != owner and tick not in locked:\n",
" # Unobserve so we don't infinitely recurse\n",
" slider.unobserve(update_presc_plot, names=\"value\")\n",
" # old value / old total = new value / new total\n",
" # Must round to the same or higher place as the slider\n",
" assert(math.log10(slider.step) % 1 == 0)\n",
" slider.value = round(slider.value / (100 - old) * (100 - new), int(-1 * math.log10(slider.step)))\n",
" slider.observe(update_presc_plot, names=\"value\")\n",
"\n",
" fig[\"data\"][1][\"values\"] = [slider.value for slider in sliders.values()]\n",
"\n",
"\n",
"\"\"\"\n",
"Submits context and actions and outputs prediction\n",
"\"\"\"\n",
"def predict(b):\n",
" context = sample_context_df\n",
" actions = [slider.value for slider in sliders.values()]\n",
" outcome, change = run_predictor(predictor_model, context, actions)\n",
" output_area.value = f\"ELUC: {outcome} tC/ha/yr\\nChange: {change}%\"\n",
"\n",
"\n",
"\"\"\"\n",
"Computes the other column and adds it on to sample_context_df\n",
"\"\"\"\n",
"def compute_and_add_other(sample_context_df):\n",
" data = sample_context_df[ALL_LAND_USE_COLS]\n",
" diff = 1 - sample_context_df[ALL_LAND_USE_COLS].iloc[0].sum()\n",
" other_val = diff if diff >= 0 else 0\n",
" data[\"nonland\"] = [other_val]\n",
" return data\n",
"\n",
"\n",
"\"\"\"\n",
"Creates initial pie chart\n",
"\"\"\"\n",
"def show_context(c):\n",
" sample_df = data_source_df[(data_source_df.i_lat==latitude_input.value) & \n",
" (data_source_df.i_lon==longitude_input.value) &\n",
" (data_source_df.time==time_input.value)]\n",
" global sample_context_df\n",
" sample_context_df = sample_df[CONTEXT_COLUMNS]\n",
" #for testing purposes:\n",
" # sample_context_df[\"pastr\"].values[0] -= .12\n",
" # sample_context_df[\"primf\"].values[0] += 0.04\n",
" # sample_context_df[\"primn\"].values[0] += 0.04\n",
" # Plot initial context pie chart\n",
" data = compute_and_add_other(sample_context_df)\n",
" fig.add_trace(go.Pie(values=data.iloc[0].tolist(),\n",
" labels=CHART_COLS, \n",
" domain=dict(x=[0, 0.5]), \n",
" title=\"Current\"), row=1, col=1)\n",
"\n",
"def load_prescriptor():\n",
" print(f\"Selected prescriptor: {prescriptor_dropdown.value}\")\n",
" prescriptor_id = prescriptor_dropdown.value\n",
" prescriptor_model_filename = os.path.join(\"prescriptors\",\n",
" prescriptor_id + '.h5')\n",
"\n",
" print(f'Loading prescriptor model: {prescriptor_model_filename}')\n",
" prescriptor_model = load_model(prescriptor_model_filename, compile=False)\n",
" return prescriptor_model\n",
" \n",
"# Context\n",
"# Create the latitude input field\n",
"latitude_input = widgets.FloatText(description='Latitude:', value=51.625)\n",
"\n",
"# Create the longitude input field\n",
"longitude_input = widgets.FloatText(description='Longitude:', value=-3.375)\n",
"\n",
"# Create the time input field\n",
"time_input = widgets.IntText(description='Year:', value=2021)\n",
"\n",
"\"\"\"\n",
"Construct widgets and attach them to their functions\n",
"\"\"\"\n",
"sliders = {feature : widgets.FloatSlider(value=0.0, step=0.001, description=\"Prescribed \" + feature, style=dict(description_width='initial')) for feature in CHART_COLS}\n",
"ticks = {feature : widgets.Checkbox(value=False, description=\"Lock \" + feature, style=dict(description_width='initial')) for feature in CHART_COLS}\n",
"# Lock primaries and other\n",
"ticks[\"primf\"].value = True\n",
"ticks[\"primn\"].value = True\n",
"ticks[\"nonland\"].value = True\n",
"\n",
"# For use in locking and unlocking sliders\n",
"locked = set()\n",
"locked.add(ticks[\"primf\"])\n",
"locked.add(ticks[\"primn\"])\n",
"locked.add(ticks[\"nonland\"])\n",
"\n",
"prescribe_button = widgets.Button(description=\"Prescribe\")\n",
"prescribe_button.on_click(prescribe)\n",
"\n",
"predict_button = widgets.Button(description=\"Predict\")\n",
"predict_button.on_click(predict)\n",
"\n",
"\n",
"\"\"\"\n",
"Display Interactables and Figures\n",
"TODO: add titles, make layout prettier\n",
"\"\"\"\n",
"fig = go.FigureWidget(make_subplots(rows=1, cols=2, specs=[[{\"type\": \"pie\"}, {\"type\": \"pie\"}]]))\n",
"fig.update_layout(margin=dict(l=0, r=0, t=0, b=0))\n",
"\n",
"# Context\n",
"context_range = f\"Latitude must be between {min_lat} and {max_lat}, in 0.250 increments.\\nLongitude must be between {min_lon} and {max_lon}, in 0.250 increments.\\nYear must be between {min_time} and {max_time}.\"\n",
"text_area = widgets.Textarea(value=context_range,\n",
" rows=3,\n",
" layout=widgets.Layout(height=\"auto\", width=\"auto\"))\n",
"display(text_area)\n",
"\n",
"display(latitude_input, longitude_input, time_input)\n",
"\n",
"show_context_button = widgets.Button(description=\"Show land use\")\n",
"show_context_button.on_click(show_context)\n",
"display(show_context_button)\n",
"\n",
"# Prescribe\n",
"prescriptor_label = widgets.Label('Select a prescriptor:')\n",
"prescriptor_dropdown = widgets.Dropdown(options=PRESCRIPTOR_LIST)\n",
"display(prescriptor_label, prescriptor_dropdown)\n",
"\n",
"display(prescribe_button)\n",
"\n",
"# Attach sliders and boxes to their observers\n",
"for feat in sliders:\n",
" sliders[feat].observe(update_presc_plot, names=\"value\")\n",
" ticks[feat].observe(lock, names=\"value\")\n",
"\n",
"# Display sliders and boxes alongside figure\n",
"slider_box = VBox(list(sliders.values()))\n",
"tick_box = VBox(list(ticks.values()))\n",
"fig_box = VBox([fig])\n",
"display(HBox([slider_box, tick_box, fig_box]))\n",
"\n",
"# Predict\n",
"display(predict_button)\n",
"output_area = widgets.Textarea(value=\"\", rows=2, layout=widgets.Layout(height=\"auto\", width=\"auto\"))\n",
"display(output_area)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|