Spaces:
Running
Running
File size: 27,416 Bytes
6d95c4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
from math import isclose
import os
import numpy as np
import pandas as pd
import regionmask
import plotly.graph_objects as go
from dash import ALL
from dash import MATCH
from dash import Dash
from dash import Input
from dash import Output
from dash import State
from dash import dcc
from dash import html
import dash_bootstrap_components as dbc
from . import Predictor
from . import Prescriptor
from . import constants
from . import utils
app = Dash(__name__,
external_stylesheets=[dbc.themes.BOOTSTRAP, dbc.icons.BOOTSTRAP],
prevent_initial_callbacks="initial_duplicate")
server = app.server
df = pd.read_csv(constants.DATA_FILE_PATH, index_col=constants.INDEX_COLS)
countries_df = regionmask.defined_regions.natural_earth_v5_0_0.countries_110.to_dataframe()
# Prescriptor list should be in order of least to most change
pareto_df = pd.read_csv(constants.PARETO_CSV_PATH)
prescriptor_list = list(pareto_df["id"])
# Cells
min_lat = df.index.get_level_values("lat").min()
max_lat = df.index.get_level_values("lat").max()
min_lon = df.index.get_level_values("lon").min()
max_lon = df.index.get_level_values("lon").max()
min_time = df.index.get_level_values("time").min()
max_time = df.index.get_level_values("time").max()
lat_list = list(np.arange(min_lat, max_lat + constants.GRID_STEP, constants.GRID_STEP))
lon_list = list(np.arange(min_lon, max_lon + constants.GRID_STEP, constants.GRID_STEP))
map_fig = go.Figure()
# Load predictors
predictors = utils.load_predictors()
# Legend examples come from https://hess.copernicus.org/preprints/hess-2021-247/hess-2021-247-ATC3.pdf
legend_div = html.Div(
style={},
children = [
dcc.Markdown('''
### Land Use Types
Primary: Vegetation that is untouched by humans
- primf: Primary forest
- primn: Primary nonforest vegetation
Secondary: Vegetation that has been touched by humans
- secdf: Secondary forest
- secdn: Secondary nonforest vegetation
Urban
Crop
- c3ann: Annual C3 crops (e.g. wheat)
- c4ann: Annual C4 crops (e.g. maize)
- c3per: Perennial C3 crops (e.g. banana)
- c4per: Perennial C4 crops (e.g. sugarcane)
- c3nfx: Nitrogen fixing C3 crops (e.g. soybean)
Pasture
- pastr: Managed pasture land
- range: Natural grassland/savannah/desert/etc.
''')
]
)
context_div = html.Div(
style={'display': 'grid',
'grid-template-columns': 'auto 1fr', 'grid-template-rows': 'auto auto auto auto',
'position': 'absolute', 'bottom': '0'},
children=[
html.P("Region", style={'grid-column': '1', 'grid-row': '1', 'padding-right': '10px'}),
dcc.Dropdown(
id="loc-dropdown",
options=list(countries_df["names"]),
value=list(countries_df["names"])[143],
style={'grid-column': '2', 'grid-row': '1', 'width': '75%', 'justify-self': 'left', 'margin-top': '-3px'}
),
html.P("Lat", style={'grid-column': '1', 'grid-row': '2', 'padding-right': '10px'}),
dcc.Dropdown(
id='lat-dropdown',
options=lat_list,
placeholder="Select a latitude",
value=51.625,
style={'grid-column': '2', 'grid-row': '2', 'width': '75%', 'justify-self': 'left', 'margin-top': '-3px',}
),
html.P("Lon", style={'grid-column': '1', 'grid-row': '3', 'padding-right': '10px'}),
dcc.Dropdown(
id='lon-dropdown',
options=lon_list,
placeholder="Select a longitude",
value=-3.375,
style={'grid-column': '2', 'grid-row': '3', 'width': '75%', 'justify-self': 'left', 'margin-top': '-3px'}
),
html.P("Year ", style={'grid-column': '1', 'grid-row': '4', 'margin-right': '10px'}),
html.Div([
dcc.Input(
id="year-input",
type="number",
value=2021,
debounce=True
),
dcc.Tooltip(f"Year must be between {min_time} and {max_time}."),
], style={'grid-column': '2', 'grid-row': '4', 'width': '75%', 'justify-self': 'left', 'margin-top': '-3px'}),
]
)
presc_select_div = html.Div([
html.P("Minimize change", style={"grid-column": "1"}),
html.Div([
dcc.Slider(id='presc-select',
min=0, max=len(prescriptor_list)-1, step=1,
value=constants.DEFAULT_PRESCRIPTOR_IDX,
included=False,
marks={i : "" for i in range(len(prescriptor_list))})
], style={"grid-column": "2", "width": "100%", "margin-top": "8px"}),
html.P("Minimize ELUC", style={"grid-column": "3", "padding-right": "10px"}),
html.Button("Prescribe", id='presc-button', n_clicks=0, style={"grid-column": "4", "margin-top": "-10px"}),
html.Button("View Pareto", id='pareto-button', n_clicks=0, style={"grid-column": "5", "margin-top": "-10px"}),
dbc.Modal(
[
dbc.ModalHeader("Pareto front"),
dcc.Graph(id='pareto-fig', figure=utils.create_pareto(pareto_df=pareto_df,
presc_id=prescriptor_list[constants.DEFAULT_PRESCRIPTOR_IDX])),
],
id="pareto-modal",
is_open=False,
),
], style={"display": "grid", "grid-template-columns": "auto 1fr auto auto", "width": "100%", "align-content": "center"})
chart_select_div = dcc.Dropdown(
options=constants.CHART_TYPES,
id="chart-select",
value=constants.CHART_TYPES[0],
clearable=False
)
check_options = utils.create_check_options(constants.RECO_COLS)
checklist_div = html.Div([
dcc.Checklist(check_options, id="locks", inputStyle={"margin-bottom": "30px"})
])
sliders_div = html.Div([
html.Div([
#html.P(col, style={"grid-column": "1"}),
html.Div([
dcc.Slider(
min=0,
max=1,
step=constants.SLIDER_PRECISION,
value=0,
marks=None,
tooltip={"placement": "bottom", "always_visible": False},
id={"type": "presc-slider", "index": f"{col}"}
)
], style={"grid-column": "1", "width": "100%", "margin-top": "8px"}),
dcc.Input(
value="0%",
type="text",
disabled=True,
id={"type": "slider-value", "index": f"{col}"},
style={"grid-column": "2", "text-align": "right", "margin-top": "-5px"}),
], style={"display": "grid", "grid-template-columns": "1fr 15%"}) for col in constants.RECO_COLS]
)
frozen_div = html.Div([
dcc.Input(
value=f"{col}: 0.00%",
type="text",
disabled=True,
id={"type": "frozen-input", "index": f"{col}-frozen"}) for col in constants.NO_CHANGE_COLS + ["nonland"]
])
predict_div = html.Div([
dcc.Dropdown(list((predictors.keys())), list(predictors.keys())[0], id="pred-select", style={"width": "200px"}),
html.Button("Predict", id='predict-button', n_clicks=0,),
html.Label("Predicted ELUC:", style={'padding-left': '10px'}),
dcc.Input(
value="",
type="text",
disabled=True,
id="predict-eluc",
),
html.Label("tC/ha", style={'padding-left': '2px'}),
html.Label("Land Change:", style={'padding-left': '10px'}),
dcc.Input(
value="",
type="text",
disabled=True,
id="predict-change",
),
html.Label("%", style={'padding-left': '2px'}),
], style={"display": "flex", "flex-direction": "row", "width": "90%", "align-items": "center"})
inline_block = {"display": "inline-block", "padding-right": "10px"}
trivia_div = html.Div([
html.Div(className="parent", children=[
html.P("Total emissions reduced from this land use change: ", className="child", style=inline_block),
html.P(id="total-em", style={"font-weight": "bold"}|inline_block)
]),
html.Div(className="parent", children=[
html.I(className="bi bi-airplane", style=inline_block),
html.P("Flight emissions from flying JFK to Geneva: ", className="child", style=inline_block),
html.P(f"{constants.CO2_JFK_GVA} tonnes CO2", style={"font-weight": "bold"}|inline_block)
]),
html.Div(className="parent", children=[
html.I(className="bi bi-airplane", style=inline_block),
html.P("Plane tickets mitigated: ", className="child", style=inline_block),
html.P(id="tickets", style={"font-weight": "bold"}|inline_block)
]),
html.Div(className="parent", children=[
html.I(className="bi bi-person", style=inline_block),
html.P("Total yearly carbon emissions of average world citizen: ", className="child", style=inline_block),
html.P(f"{constants.CO2_PERSON} tonnes CO2", style={"font-weight": "bold"}|inline_block)
]),
html.Div(className="parent", children=[
html.I(className="bi bi-person", style=inline_block),
html.P("Number of peoples' carbon emissions mitigated from this change : ", className="child", style=inline_block),
html.P(id="people", style={"font-weight": "bold"}|inline_block)
]),
html.P("(Sources: https://flightfree.org/flight-emissions-calculator https://scied.ucar.edu/learning-zone/climate-solutions/carbon-footprint)", style={"font-size": "10px"})
])
references_div = html.Div([
html.Div(className="parent", children=[
html.P("Code for this project can be found here: ",
className="child", style=inline_block),
html.A("(Project Resilience MVP repo)", href="https://github.com/Project-Resilience/mvp/tree/main/use_cases/eluc\n"),
]),
html.Div(className="parent", children=[
html.P("The paper for this project can be found here: ",
className="child", style=inline_block),
html.A("(arXiv link)", href="https://arxiv.org/abs/2311.12304\n"),
]),
html.Div(className="parent", children=[
html.P("ELUC data provided by the BLUE model ",
className="child", style=inline_block),
html.A("(BLUE: Bookkeeping of land use emissions)", href="https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014GB004997\n"),
]),
html.Div(className="parent", children=[
html.P("Land use change data provided by the LUH2 project",
className="child", style=inline_block),
html.A("(LUH2: Land Use Harmonization 2)", href="https://luh.umd.edu/\n"),
]),
html.Div(className="parent", children=[
html.P("Setup is described in Appendix C2.1 of the GCB 2022 report",
className="child", style=inline_block),
html.A("(Global Carbon Budget 2022 report)", href="https://essd.copernicus.org/articles/14/4811/2022/#section10/\n"),
]),
html.Div(className="parent", children=[
html.P("The Global Carbon Budget report assesses the global CO2 budget for the Intergovernmental Panel on Climate Change",
className="child", style=inline_block),
html.A("(IPCC)", href="https://www.ipcc.ch/\n"),
]),
])
@app.callback(
Output("pareto-modal", "is_open"),
Output("pareto-fig", "figure"),
[Input("pareto-button", "n_clicks")],
[State("pareto-modal", "is_open")],
[State("presc-select", "value")],
)
def toggle_modal(n, is_open, presc_idx):
"""
Toggles pareto modal.
:param n: Number of times button has been clicked.
:param is_open: Whether the modal is open.
:param presc_idx: The index of the prescriptor to show.
:return: The new state of the modal and the figure to show.
"""
fig = utils.create_pareto(pareto_df, prescriptor_list[presc_idx])
if n:
return not is_open, fig
return is_open, fig
@app.callback(
Output("lat-dropdown", "value"),
Output("lon-dropdown", "value"),
Input("map", "clickData"),
prevent_initial_call=True
)
def click_map(click_data):
"""
Selects context when point on map is clicked.
:param click_data: Input data from click action.
:return: The new longitude and latitude to put into the dropdowns.
"""
return click_data["points"][0]["lat"], click_data["points"][0]["lon"]
@app.callback(
Output("lat-dropdown", "value", allow_duplicate=True),
Output("lon-dropdown", "value", allow_duplicate=True),
Input("loc-dropdown", "value"),
State("year-input", "value"),
prevent_initial_call=True
)
def select_country(location, year):
"""
Changes the selected country and relocates map to a valid lat/lon.
This makes the update_map function only load the current country's data.
:param location: Selected country name.
:param year: Used to get proper # of points to sample from.
:return: A sample latitude/longitude point within the selected country.
"""
country_idx = countries_df[countries_df["names"] == location].index[0]
samples = df[df["country"] == country_idx].loc[year]
example = samples.iloc[len(samples) // 2]
return example.name[0], example.name[1]
@app.callback(
Output("map", "figure"),
Input("year-input", "value"),
Input("lat-dropdown", "value"),
Input("lon-dropdown", "value"),
State("loc-dropdown", "value"),
)
def update_map(year, lat, lon, location):
"""
Updates map data behind the scenes when year is clicked.
Changes focus when region is selected.
:param location: Selected country name.
:param year: The selected year.
:return: A newly created map.
"""
country_idx = countries_df[countries_df["names"] == location].index[0]
# Filter data by year and location
data = df.loc[year]
data = data[data["country"] == country_idx]
data = data.copy().reset_index()
# Find colored point
lat_lon = (data["lat"] == lat) & (data["lon"] == lon)
idx = data[lat_lon].index[0]
return utils.create_map(data, 10, idx)
@app.callback(
Output({"type": "frozen-input", "index": ALL}, "value"),
Output({"type": "presc-slider", "index": ALL}, "value"),
Output({"type": "presc-slider", "index": ALL}, "max"),
Input("lat-dropdown", "value"),
Input("lon-dropdown", "value"),
Input("year-input", "value")
)
def set_frozen_reset_sliders(lat, lon, year):
"""
Resets prescription sliders to 0 to avoid confusion.
Also sets prescription sliders' max values to 1 - no change cols to avoid negative values.
:param lat: Selected latitude.
:param lon: Selected longitude.
:param year: Selected year.
:return: Frozen values, slider values, and slider max.
"""
context = df.loc[year, lat, lon]
chart_data = utils.add_nonland(context[constants.LAND_USE_COLS])
frozen_cols = constants.NO_CHANGE_COLS + ["nonland"]
frozen = chart_data[frozen_cols].tolist()
frozen = [f"{frozen_cols[i]}: {frozen[i]*100:.2f}%" for i in range(len(frozen_cols))]
reset = [0 for _ in constants.RECO_COLS]
max_val = chart_data[constants.RECO_COLS].sum()
maxes = [max_val for _ in range(len(constants.RECO_COLS))]
return frozen, reset, maxes
@app.callback(
Output("context-fig", "figure"),
Input("chart-select", "value"),
Input("year-input", "value"),
Input("lat-dropdown", "value"),
Input("lon-dropdown", "value")
)
def update_context_chart(chart_type, year, lat, lon):
"""
Updates context chart when context store is updated or chart type is changed.
:param chart_type: String input from chart select dropdown.
:param year: Selected context year.
:param lat: Selected context lat.
:param lon: Selected context lon.
:return: New figure type selected by chart_type with data context.
"""
context = df.loc[year, lat, lon]
chart_data = utils.add_nonland(context[constants.LAND_USE_COLS])
assert chart_type in ("Treemap", "Pie Chart")
if chart_type == "Treemap":
return utils.create_treemap(chart_data, type_context=True, year=year)
return utils.create_pie(chart_data, type_context=True, year=year)
@app.callback(
Output({"type": "presc-slider", "index": ALL}, "value", allow_duplicate=True),
Input("presc-button", "n_clicks"),
State("presc-select", "value"),
State("year-input", "value"),
State("lat-dropdown", "value"),
State("lon-dropdown", "value"),
prevent_initial_call=True
)
def select_prescriptor(n_clicks, presc_idx, year, lat, lon):
"""
Selects prescriptor, runs on context, updates sliders.
:param n_clicks: Unused number of times button has been clicked.
:param presc_idx: Index of prescriptor in PRESCRIPTOR_LIST to load.
:param year: Selected context year.
:param lat: Selected context lat.
:param lon: Selected context lon.
:return: Updated slider values.
"""
presc_id = prescriptor_list[presc_idx]
prescriptor = Prescriptor.Prescriptor(presc_id)
context = df.loc[year, lat, lon][constants.CONTEXT_COLUMNS]
context_df = pd.DataFrame([context])
prescribed = prescriptor.run_prescriptor(context_df)
return prescribed.iloc[0].tolist()
@app.callback(
Output({"type": "slider-value", "index": MATCH}, "value"),
Input({"type": "presc-slider", "index": MATCH}, "value")
)
def show_slider_value(slider):
"""
Displays slider values next to sliders.
:param sliders: Slider values.
:return: Slider values.
"""
return f"{slider * 100:.2f}%"
@app.callback(
Output("sum-warning", "children"),
Output("predict-change", "value"),
Input({"type": "presc-slider", "index": ALL}, "value"),
State("year-input", "value"),
State("lat-dropdown", "value"),
State("lon-dropdown", "value"),
State("locks", "value"),
prevent_initial_call=True
)
def compute_land_change(sliders, year, lat, lon, locked):
"""
Computes land change percent for output.
Warns user if values don't sum to 1.
:param sliders: Slider values to store.
:param year: Selected context year.
:param lat: Selected context lat.
:param lon: Selected context lon.
:param locked: Locked columns to check for warning.
:return: Warning if necessary, land change percent.
"""
context = df.loc[year, lat, lon][constants.LAND_USE_COLS]
presc = pd.Series(sliders, index=constants.RECO_COLS)
warnings = []
# Check if prescriptions sum to 1
# TODO: Are we being precise enough?
new_sum = presc.sum()
old_sum = context[constants.RECO_COLS].sum()
if not isclose(new_sum, old_sum, rel_tol=1e-7):
warnings.append(html.P(f"WARNING: Please make sure prescriptions sum to: {str(old_sum * 100)} instead of {str(new_sum * 100)} by clicking \"Sum to 100\""))
# Check if sum of locked prescriptions are > sum(land use)
# TODO: take a look at this logic.
if locked and presc[locked].sum() > old_sum:
warnings.append(html.P("WARNING: Sum of locked prescriptions is greater than sum of land use. Please reduce one before proceeding"))
# Check if any prescriptions below 0
if (presc < 0).any():
warnings.append(html.P("WARNING: Negative values detected. Please lower the value of a locked slider."))
# Compute total change
change = utils.compute_percent_change(context, presc)
return warnings, f"{change * 100:.2f}"
@app.callback(
Output("presc-fig", "figure"),
Input("chart-select", "value"),
Input({"type": "presc-slider", "index": ALL}, "value"),
State("year-input", "value"),
State("lat-dropdown", "value"),
State("lon-dropdown", "value"),
prevent_initial_call=True
)
def update_presc_chart(chart_type, sliders, year, lat, lon):
"""
Updates prescription pie from store according to chart type.
:param chart_type: String input from chart select dropdown.
:param sliders: Prescribed slider values.
:param year: Selected context year (also for title of chart).
:param lat: Selected context lat.
:param lon: Selected context lon.
:return: New chart of type chart_type using presc data.
"""
# If we have no prescription just return an empty chart
if all(slider == 0 for slider in sliders):
return utils.create_treemap(pd.Series([]), type_context=False, year=year)
presc = pd.Series(sliders, index=constants.RECO_COLS)
context = df.loc[year, lat, lon]
chart_data = context[constants.LAND_USE_COLS].copy()
chart_data[constants.RECO_COLS] = presc[constants.RECO_COLS]
# Manually calculate nonland from context so that it's not zeroed out by sliders.
nonland = 1 - context[constants.LAND_USE_COLS].sum()
nonland = nonland if nonland > 0 else 0
chart_data["nonland"] = nonland
assert chart_type in ("Treemap", "Pie Chart")
if chart_type == "Treemap":
return utils.create_treemap(chart_data, type_context=False, year=year)
return utils.create_pie(chart_data, type_context=False, year=year)
@app.callback(
Output({"type": "presc-slider", "index": ALL}, "value", allow_duplicate=True),
Input("sum-button", "n_clicks"),
State({"type": "presc-slider", "index": ALL}, "value"),
State("year-input", "value"),
State("lat-dropdown", "value"),
State("lon-dropdown", "value"),
State("locks", "value"),
prevent_initial_call=True
)
def sum_to_1(n_clicks, sliders, year, lat, lon, locked):
"""
Sets slider values to sum to how much land was used in context.
Subtracts locked sum from both of these and doesn't adjust them.
:param n_clicks: Unused number of times button has been clicked.
:param sliders: Prescribed slider values to set to sum to 1.
:param year: Selected context year.
:param lat: Selected context lat.
:param lon: Selected context lon.
:param locked: Which sliders to not consider in calculation.
:return: Slider values scaled down to fit percentage of land used in context.
"""
context = df.loc[year, lat, lon]
presc = pd.Series(sliders, index=constants.RECO_COLS)
old_sum = context[constants.RECO_COLS].sum()
new_sum = presc.sum()
# TODO: There is certainly a more elegant way to handle this.
if locked:
unlocked = [col for col in constants.RECO_COLS if col not in locked]
locked_sum = presc[locked].sum()
old_sum -= locked_sum
new_sum -= locked_sum
# We do this to avoid divide by zero. In the case where new_sum == 0
# we have all locked columns and/or zero columns so no adjustment is needed
if new_sum != 0:
presc[unlocked] = presc[unlocked].div(new_sum).mul(old_sum)
else:
presc = presc.div(new_sum).mul(old_sum)
# Set all negative values to 0
presc[presc < 0] = 0
return presc.tolist()
@app.callback(
Output("predict-eluc", "value"),
Input("predict-button", "n_clicks"),
State("year-input", "value"),
State("lat-dropdown", "value"),
State("lon-dropdown", "value"),
State({"type": "presc-slider", "index": ALL}, "value"),
State("pred-select", "value"),
prevent_initial_call=True
)
def predict(n_clicks, year, lat, lon, sliders, predictor_name):
"""
Predicts ELUC from context and prescription stores.
:param n_clicks: Unused number of times button has been clicked.
:param year: Selected context year.
:param lat: Selected context lat.
:param lon: Selected context lon.
:param sliders: Prescribed slider values.
:param predictor_name: String name of predictor to use from dropdown.
:return: Predicted ELUC.
"""
context = df.loc[year, lat, lon]
presc = pd.Series(sliders, index=constants.RECO_COLS)
# Preprocess presc into diffs
presc = presc.combine_first(context[constants.NO_CHANGE_COLS])
diff = presc[constants.LAND_USE_COLS] - context[constants.LAND_USE_COLS]
diff = diff.rename(constants.COLS_MAP)
diff_df = pd.DataFrame([diff])
predictor = predictors[predictor_name]
eluc = predictor.predict(diff_df)
return f"{eluc:.4f}"
@app.callback(
Output("total-em", "children"),
Output("tickets", "children"),
Output("people", "children"),
Input("predict-eluc", "value"),
State("year-input", "value"),
State("lat-dropdown", "value"),
State("lon-dropdown", "value"),
prevent_initial_call=True
)
def update_trivia(eluc_str, year, lat, lon):
"""
Updates trivia section based on rounded ELUC value.
:param eluc_str: ELUC in string form.
:param year: Selected context year.
:param lat: Selected context lat.
:param lon: Selected context lon.
:return: Trivia string output.
"""
context = df.loc[year, lat, lon]
area = context["cell_area"]
# Calculate total reduction
eluc = float(eluc_str)
total_reduction = eluc * area
return f"{-1 * total_reduction:,.2f} tonnes CO2", \
f"{-1 * total_reduction // constants.CO2_JFK_GVA:,.0f} tickets", \
f"{-1 * total_reduction // constants.CO2_PERSON:,.0f} people"
app.title = 'Land Use Optimization'
app.css.config.serve_locally = False
# Don't be afraid of the 3rd party URLs: chriddyp is the author of Dash!
# These two allow us to dim the screen while loading.
# See discussion with Dash devs here: https://community.plotly.com/t/dash-loading-states/5687
app.css.append_css({'external_url': 'https://codepen.io/chriddyp/pen/bWLwgP.css'})
app.css.append_css({'external_url': 'https://codepen.io/chriddyp/pen/brPBPO.css'})
app.layout = html.Div([
dcc.Markdown('''
# Land Use Optimization
This site is for demonstration purposes only.
For a given context cell representing a portion of the earth,
identified by its latitude and longitude coordinates, and a given year:
* What changes can we make to the land usage
* In order to minimize the resulting estimated CO2 emissions? (Emissions from Land Use Change, ELUC,
in tons of carbon per hectare)
*Note: the prescriptor model is currently only trained on Western Europe*
'''),
dcc.Markdown('''## Context'''),
html.Div([
dcc.Graph(id="map", figure=map_fig, style={"grid-column": "1"}),
html.Div([context_div], style={"grid-column": "2"}),
html.Div([legend_div], style={"grid-column": "3"})
], style={"display": "grid", "grid-template-columns": "auto 1fr auto", 'position': 'relative'}),
dcc.Markdown('''## Actions'''),
html.Div([
html.Div([presc_select_div], style={"grid-column": "1"}),
html.Div([chart_select_div], style={"grid-column": "2", "margin-top": "-10px", "margin-left": "10px"}),
], style={"display": "grid", "grid-template-columns": "45% 15%"}),
html.Div([
html.Div(checklist_div, style={"grid-column": "1", "height": "100%"}),
html.Div(sliders_div, style={'grid-column': '2'}),
dcc.Graph(id='context-fig', figure=utils.create_treemap(type_context=True), style={'grid-column': '3'}),
dcc.Graph(id='presc-fig', figure=utils.create_treemap(type_context=False), style={'grid-clumn': '4'})
], style={'display': 'grid', 'grid-template-columns': 'auto 40% 1fr 1fr', "width": "100%"}),
html.Div([
frozen_div,
html.Button("Sum to 100%", id='sum-button', n_clicks=0),
html.Div(id='sum-warning')
]),
dcc.Markdown('''## Outcomes'''),
predict_div,
dcc.Markdown('''## Trivia'''),
trivia_div,
dcc.Markdown('''## References'''),
references_div
], style={'padding-left': '10px'},)
if __name__ == '__main__':
app.run_server(host='0.0.0.0', debug=False, port=4057, use_reloader=False, threaded=False)
|