landuse / app /Prescriptor.py
danyoung's picture
Added app
6d95c4c
raw
history blame
4.96 kB
import os
import json
from typing import List
import pandas as pd
import numpy as np
from keras.models import load_model
from . import constants
from . import utils
class Prescriptor:
"""
Wrapper for Keras prescriptor and encoder.
"""
def __init__(self, prescriptor_id: str):
"""
:param prescriptor_id: ID of Keras prescriptor to load.
"""
prescriptor_model_filename = os.path.join(constants.PRESCRIPTOR_PATH,
prescriptor_id + '.h5')
self.prescriptor_model = load_model(prescriptor_model_filename, compile=False)
self.encoder = None
with open(constants.FIELDS_PATH, 'r') as f:
fields = json.load(f)
self.encoder = utils.Encoder(fields)
def _is_single_action_prescriptor(self, actions):
"""
Checks how many Actions have been defined in the Context, Actions, Outcomes mapping.
:return: True if only 1 action is defined, False otherwise
"""
return len(actions) == 1
def _is_scalar(self, prescribed_action):
"""
Checks if the prescribed action contains a single value, i.e. a scalar, or an array.
A prescribed action contains a single value if it has been prescribed for a single context sample
:param prescribed_action: a scalar or an array
:return: True if the prescribed action contains a scalar, False otherwise.
"""
return prescribed_action.shape[0] == 1 and prescribed_action.shape[1] == 1
def _convert_to_nn_input(self, context_df: pd.DataFrame) -> List[np.ndarray]:
"""
Converts a context DataFrame to a list of numpy arrays a neural network can ingest
:param context_df: a DataFrame containing inputs for a neural network. Number of inputs and size must match
:return: a list of numpy ndarray, on ndarray per neural network input
"""
# The NN expects a list of i inputs by s samples (e.g. 9 x 299).
# So convert the data frame to a numpy array (gives shape 299 x 9), transpose it (gives 9 x 299)
# and convert to list(list of 9 arrays of 299)
context_as_nn_input = list(context_df.to_numpy().transpose())
# Convert each column's list of 1D array to a 2D array
context_as_nn_input = [np.stack(context_as_nn_input[i], axis=0) for i in
range(len(context_as_nn_input))]
return context_as_nn_input
def __prescribe_from_model(self, context_df: pd.DataFrame) -> pd.DataFrame:
"""
Generates prescriptions using the passed neural network candidate and context
::param context_df: a DataFrame containing the context to prescribe for,
:return: a pandas DataFrame of action name to action value or list of action values
"""
action_list = ['reco_land_use']
# Convert the input df
context_as_nn_input = self._convert_to_nn_input(context_df)
row_index = context_df.index
# Get the prescrib?ed actions
prescribed_actions = self.prescriptor_model.predict(context_as_nn_input)
actions = {}
if self._is_single_action_prescriptor(action_list):
# Put the single action in an array to process it like multiple actions
prescribed_actions = [prescribed_actions]
for idx, action_col in enumerate(action_list):
if self._is_scalar(prescribed_actions[idx]):
# We have a single row and this action is numerical. Convert it to a scalar.
actions[action_col] = prescribed_actions[idx].item()
else:
actions[action_col] = prescribed_actions[idx].tolist()
# Convert the prescribed actions to a DataFrame
prescribed_actions_df = pd.DataFrame(actions,
columns=action_list,
index=row_index)
return prescribed_actions_df
def run_prescriptor(self, sample_context_df):
"""
Runs prescriptor on context. Then re-scales prescribed land
use to match how much was used in the sample.
:param sample_context_df: a DataFrame containing the context
:return: DataFrame of prescribed land use
"""
encoded_sample_context_df = self.encoder.encode_as_df(sample_context_df)
prescribed_actions_df = self.__prescribe_from_model(encoded_sample_context_df)
reco_land_use_df = pd.DataFrame(prescribed_actions_df["reco_land_use"].tolist(),
columns=constants.RECO_COLS)
# Re-scales our prescribed land to match the amount of land used in the sample
used = sample_context_df[constants.RECO_COLS].iloc[0].sum()
reco_land_use_df = reco_land_use_df[constants.RECO_COLS].mul(used, axis=0)
# Reorder columns
return reco_land_use_df[constants.RECO_COLS]