|
import os |
|
from pathlib import Path |
|
|
|
import pandas as pd |
|
|
|
from src.model_list import MODEL_MAPPING, MODEL_SHORT_TO_LONG, get_all_model_list |
|
from src.utils import process_kernels, process_quantizations |
|
|
|
COLUMNS_MAPPING = { |
|
"config.name": "Experiment 🧪", |
|
"config.backend.model": "Model 🤗", |
|
|
|
"report.prefill.latency.p50": "Prefill (s)", |
|
"report.per_token.latency.p50": "Per Token (s)", |
|
"report.decode.throughput.value": "Decode (tokens/s)", |
|
"report.decode.efficiency.value": "Energy (tokens/kWh)", |
|
"report.decode.memory.max_allocated": "Memory (MB)", |
|
|
|
"config.backend.name": "Backend 🏭", |
|
"config.backend.torch_dtype": "Precision 📥", |
|
"quantization": "Quantization 🗜️", |
|
"attention": "Attention 👁️", |
|
"kernel": "Kernel ⚛️", |
|
|
|
"architecture": "Architecture 🏛️", |
|
"prefill+decode": "End-to-End (s)", |
|
"Average ⬆️": "Open LLM Score (%)", |
|
"#Params (B)": "Params (B)", |
|
} |
|
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"] |
|
SUBSETS = ["unquantized", "awq", "bnb", "gptq"] |
|
SORTING_ASCENDING = [False, True, False] |
|
|
|
BGB_SORTING_COLUMNS = ["Average"] |
|
|
|
|
|
BGB_COLUMNS_MAPPING = { |
|
"model_name_or_path": "Model 🤗", |
|
"model_params": "Model Params (B)", |
|
"model_type": "Model Type", |
|
"average": "Average", |
|
"grounding": "Grounding ⚡️", |
|
"instruction_following": "Instruction Following 📝", |
|
"planning": "Planning 📅", |
|
"reasoning": "Reasoning 💡", |
|
"refinement": "Refinement 🔩", |
|
"safety": "Safety ⚠️", |
|
"theory_of_mind": "Theory of Mind 🤔", |
|
"tool_usage": "Tool Usage 🛠️", |
|
"multilingual": "Multilingual 🇬🇫", |
|
} |
|
|
|
|
|
def get_raw_llm_perf_df(machine: str = "1xA10"): |
|
dfs = [] |
|
for subset in SUBSETS: |
|
try: |
|
dfs.append( |
|
pd.read_csv(f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/perf-df-{subset}-{machine}.csv") |
|
) |
|
except Exception: |
|
print(f"Subset {subset} for machine {machine} not found") |
|
|
|
perf_df = pd.concat(dfs) |
|
llm_df = pd.read_csv("hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv") |
|
|
|
llm_perf_df = pd.merge(llm_df, perf_df, left_on="Model", right_on="config.backend.model") |
|
|
|
return llm_perf_df |
|
|
|
|
|
def processed_llm_perf_df(llm_perf_df): |
|
|
|
assert llm_perf_df["config.scenario.input_shapes.batch_size"].nunique() == 1 |
|
assert llm_perf_df["config.scenario.input_shapes.sequence_length"].nunique() == 1 |
|
assert llm_perf_df["config.scenario.generate_kwargs.max_new_tokens"].nunique() == 1 |
|
assert llm_perf_df["config.scenario.generate_kwargs.min_new_tokens"].nunique() == 1 |
|
|
|
llm_perf_df.dropna(subset=["report.decode.latency.p50"], inplace=True) |
|
llm_perf_df["config.name"] = llm_perf_df["config.name"].str.replace("flash_attention_2", "fa2") |
|
llm_perf_df["prefill+decode"] = llm_perf_df["report.prefill.latency.p50"] + ( |
|
llm_perf_df["report.decode.latency.p50"] |
|
) |
|
|
|
|
|
|
|
llm_perf_df["architecture"] = llm_perf_df["Architecture"] |
|
llm_perf_df["attention"] = ( |
|
llm_perf_df["config.backend.attn_implementation"] |
|
.str.replace("flash_attention_2", "FAv2") |
|
.str.replace("eager", "Eager") |
|
.str.replace("sdpa", "SDPA") |
|
) |
|
llm_perf_df["quantization"] = llm_perf_df.apply(process_quantizations, axis=1) |
|
llm_perf_df["kernel"] = llm_perf_df.apply(process_kernels, axis=1) |
|
|
|
llm_perf_df = llm_perf_df.round( |
|
{ |
|
"report.prefill.latency.p50": 3, |
|
"report.decode.latency.p50": 3, |
|
"report.decode.throughput.value": 3, |
|
"report.decode.efficiency.value": 3, |
|
"report.decode.memory.max_allocated": 3, |
|
"Average ⬆️": 3, |
|
"prefill+decode": 3, |
|
"#Params (B)": 3, |
|
} |
|
) |
|
|
|
llm_perf_df = llm_perf_df[list(COLUMNS_MAPPING.keys())] |
|
|
|
llm_perf_df.rename(columns=COLUMNS_MAPPING, inplace=True) |
|
|
|
llm_perf_df.sort_values( |
|
by=SORTING_COLUMNS, |
|
ascending=SORTING_ASCENDING, |
|
inplace=True, |
|
) |
|
|
|
return llm_perf_df |
|
|
|
|
|
def get_llm_perf_df(machine: str = "1xA10"): |
|
if os.path.exists(f"llm-perf-leaderboard-{machine}.csv"): |
|
llm_perf_df = pd.read_csv(f"llm-perf-leaderboard-{machine}.csv") |
|
else: |
|
llm_perf_df = get_raw_llm_perf_df(machine) |
|
llm_perf_df = processed_llm_perf_df(llm_perf_df) |
|
llm_perf_df.to_csv(f"llm-perf-leaderboard-{machine}.csv", index=False) |
|
|
|
return llm_perf_df |
|
|
|
|
|
def get_eval_df(eval_model_name: str): |
|
|
|
assert eval_model_name in ["gpt-4-turbo-2024-04-09", "prometheus-bgb-8x7b-v2.0"] |
|
|
|
base_dir = Path(__file__).parent.parent / "data" |
|
filepath = base_dir / f"bgb-leaderboard-{eval_model_name}.pkl" |
|
|
|
csv_filepath = base_dir / f"bgb-leaderboard-{eval_model_name}.csv" |
|
|
|
def change_model_name(model_name: str): |
|
|
|
model_name_or_path = MODEL_SHORT_TO_LONG.get(model_name, model_name) |
|
if model_name == "qwen/qwen-110b-chat": |
|
model_name_or_path = "Qwen/Qwen1.5-110B-Chat" |
|
|
|
if model_name_or_path.endswith("-hjpark"): |
|
model_name_or_path = model_name_or_path.replace("-hjpark", "") |
|
|
|
return model_name_or_path |
|
|
|
if os.path.exists(filepath) and False: |
|
eval_df = pd.read_pickle(filepath) |
|
else: |
|
|
|
raw_filepath = base_dir / f"eval_by_{eval_model_name}.csv" |
|
eval_df = pd.read_csv(raw_filepath) |
|
|
|
eval_df["model_name_or_path"] = eval_df["model_name"].apply(lambda x: change_model_name(x)) |
|
eval_df.drop(columns=["model_name"], inplace=True) |
|
|
|
eval_df["model_params"] = eval_df["model_name_or_path"].apply( |
|
lambda x: MODEL_MAPPING.get(x, [None, "Unknown"])[0] |
|
) |
|
eval_df["model_type"] = eval_df["model_name_or_path"].apply( |
|
lambda x: MODEL_MAPPING.get(x, [None, "Unknown"])[1] |
|
) |
|
|
|
capabilities = [ |
|
"grounding", |
|
"instruction_following", |
|
"planning", |
|
"reasoning", |
|
"refinement", |
|
"safety", |
|
"theory_of_mind", |
|
"tool_usage", |
|
"multilingual", |
|
] |
|
|
|
|
|
eval_df["average"] = eval_df[capabilities].mean(axis=1) |
|
|
|
|
|
eval_df = eval_df.round( |
|
{ |
|
"average": 3, |
|
"grounding": 3, |
|
"instruction_following": 3, |
|
"planning": 3, |
|
"reasoning": 3, |
|
"refinement": 3, |
|
"safety": 3, |
|
"theory_of_mind": 3, |
|
"tool_usage": 3, |
|
"multilingual": 3, |
|
} |
|
) |
|
|
|
|
|
eval_df.rename(columns=BGB_COLUMNS_MAPPING, inplace=True) |
|
|
|
eval_df.sort_values( |
|
by=BGB_SORTING_COLUMNS, |
|
ascending=False, |
|
inplace=True, |
|
) |
|
|
|
eval_df.to_pickle(str(filepath)) |
|
eval_df.to_csv(str(csv_filepath), index=False) |
|
|
|
|
|
return eval_df |
|
|
|
|
|
if __name__ == "__main__": |
|
get_eval_df("gpt-4-turbo-2024-04-09") |
|
get_eval_df("prometheus-bgb-8x7b-v2.0") |
|
|