Spaces:
Runtime error
Runtime error
scottsuk0306
commited on
Commit
β’
b1b6ed6
1
Parent(s):
9172f10
Init
Browse files- app.py +157 -0
- requirements.txt +5 -0
- src/.gitignore +1 -0
- src/__init__.py +0 -0
- src/assets.py +61 -0
- src/content.py +31 -0
- src/leaderboard.py +218 -0
- src/llm_perf.py +220 -0
- src/model_card.py +160 -0
- src/model_list.py +529 -0
- src/panel.py +60 -0
- src/utils.py +99 -0
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
|
3 |
+
|
4 |
+
from src.assets import custom_css
|
5 |
+
from src.content import ABOUT, BGB_LOGO, BGB_TITLE, CITATION_BUTTON, CITATION_BUTTON_LABEL, LOGO, TITLE
|
6 |
+
from src.leaderboard import (
|
7 |
+
BGB_COLUMN_MAPPING,
|
8 |
+
BGB_COLUMN_TO_DATATYPE,
|
9 |
+
CAPABILITY_COLUMNS,
|
10 |
+
create_bgb_leaderboard_table,
|
11 |
+
create_leaderboard_table,
|
12 |
+
get_bgb_leaderboard_df,
|
13 |
+
)
|
14 |
+
from src.llm_perf import get_eval_df, get_llm_perf_df
|
15 |
+
from src.panel import create_select_callback
|
16 |
+
|
17 |
+
BGB = True
|
18 |
+
|
19 |
+
# prometheus-eval/prometheus-bgb-8x7b-v2.0
|
20 |
+
|
21 |
+
# def init_leaderboard():
|
22 |
+
# machine = "1xA10"
|
23 |
+
# open_llm_perf_df = get_llm_perf_df(machine=machine)
|
24 |
+
# search_bar, columns_checkboxes, leaderboard_table = create_leaderboard_table(open_llm_perf_df)
|
25 |
+
# return machine, search_bar, columns_checkboxes, leaderboard_table
|
26 |
+
|
27 |
+
|
28 |
+
EVAL_MODELS = [
|
29 |
+
"gpt-4-turbo-2024-04-09",
|
30 |
+
"prometheus-bgb-8x7b-v2.0",
|
31 |
+
]
|
32 |
+
|
33 |
+
EVAL_MODEL_TABS = {
|
34 |
+
"gpt-4-turbo-2024-04-09": "GPT-4 as a Judge π
",
|
35 |
+
"prometheus-bgb-8x7b-v2.0": "Prometheus as a Judge π
",
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
demo = gr.Blocks(css=custom_css)
|
40 |
+
with demo:
|
41 |
+
gr.HTML(BGB_LOGO, elem_classes="logo")
|
42 |
+
gr.HTML(BGB_TITLE, elem_classes="title")
|
43 |
+
# gr.HTML(BGB_LOGO_AND_TITLE, elem_classes="title")
|
44 |
+
|
45 |
+
with gr.Tabs(elem_classes="tabs"):
|
46 |
+
|
47 |
+
for idx, eval_model in enumerate(EVAL_MODELS):
|
48 |
+
tab_name = EVAL_MODEL_TABS[eval_model]
|
49 |
+
|
50 |
+
# Previous code without gradio_leaderboard
|
51 |
+
|
52 |
+
# machine = eval_model
|
53 |
+
# machine_textbox = gr.Textbox(value=eval_model, visible=False)
|
54 |
+
|
55 |
+
# if BGB:
|
56 |
+
# eval_df = get_eval_df(eval_model_name=eval_model)
|
57 |
+
# else:
|
58 |
+
# eval_df = get_llm_perf_df(machine=machine)
|
59 |
+
# # Leaderboard
|
60 |
+
# with gr.TabItem(tab_name, id=idx):
|
61 |
+
# if BGB:
|
62 |
+
# search_bar, columns_checkboxes, type_checkboxes, param_slider, leaderboard_table = create_bgb_leaderboard_table(eval_df)
|
63 |
+
# else:
|
64 |
+
# search_bar, columns_checkboxes, type_checkboxes, param_slider, leaderboard_table = (
|
65 |
+
# create_leaderboard_table(eval_df)
|
66 |
+
# )
|
67 |
+
|
68 |
+
# create_select_callback(
|
69 |
+
# # inputs
|
70 |
+
# machine_textbox,
|
71 |
+
# # interactive
|
72 |
+
# columns_checkboxes,
|
73 |
+
# search_bar,
|
74 |
+
# type_checkboxes,
|
75 |
+
# param_slider,
|
76 |
+
# # outputs
|
77 |
+
# leaderboard_table,
|
78 |
+
# )
|
79 |
+
with gr.TabItem(tab_name, id=idx):
|
80 |
+
|
81 |
+
eval_df = get_eval_df(eval_model_name=eval_model)
|
82 |
+
eval_df = get_bgb_leaderboard_df(eval_df)
|
83 |
+
|
84 |
+
ordered_columns = [
|
85 |
+
"Model π€",
|
86 |
+
"Average",
|
87 |
+
"Grounding β‘οΈ",
|
88 |
+
"Instruction Following π",
|
89 |
+
"Planning π
",
|
90 |
+
"Reasoning π‘",
|
91 |
+
"Refinement π©",
|
92 |
+
"Safety β οΈ",
|
93 |
+
"Theory of Mind π€",
|
94 |
+
"Tool Usage π οΈ",
|
95 |
+
"Multilingual π¬π«",
|
96 |
+
"Model Type",
|
97 |
+
"Model Params (B)",
|
98 |
+
]
|
99 |
+
|
100 |
+
ordered_columns_types = [
|
101 |
+
"markdown",
|
102 |
+
"number",
|
103 |
+
"number",
|
104 |
+
"number",
|
105 |
+
"number",
|
106 |
+
"number",
|
107 |
+
"number",
|
108 |
+
"number",
|
109 |
+
"number",
|
110 |
+
"number",
|
111 |
+
"number",
|
112 |
+
"text",
|
113 |
+
"number",
|
114 |
+
]
|
115 |
+
|
116 |
+
eval_df = eval_df[ordered_columns]
|
117 |
+
|
118 |
+
Leaderboard(
|
119 |
+
value=eval_df,
|
120 |
+
datatype=ordered_columns_types,
|
121 |
+
select_columns=SelectColumns(
|
122 |
+
default_selection=ordered_columns,
|
123 |
+
cant_deselect=["Model π€", "Model Type", "Model Params (B)"],
|
124 |
+
label="Select Columns to Display:",
|
125 |
+
),
|
126 |
+
search_columns=["Model π€"],
|
127 |
+
# hide_columns=["model_name_for_query", "Model Size"],
|
128 |
+
filter_columns=[
|
129 |
+
ColumnFilter("Model Type", type="checkboxgroup", label="Model types"),
|
130 |
+
ColumnFilter(
|
131 |
+
"Model Params (B)",
|
132 |
+
min=0,
|
133 |
+
max=150,
|
134 |
+
default=[0, 150],
|
135 |
+
type="slider",
|
136 |
+
label="Model Params (B)",
|
137 |
+
),
|
138 |
+
],
|
139 |
+
)
|
140 |
+
|
141 |
+
####################### ABOUT TAB #######################
|
142 |
+
with gr.TabItem("About π", id=3):
|
143 |
+
gr.Markdown(ABOUT, elem_classes="descriptive-text")
|
144 |
+
|
145 |
+
####################### CITATION
|
146 |
+
with gr.Row():
|
147 |
+
with gr.Accordion("π Citation", open=False):
|
148 |
+
citation_button = gr.Textbox(
|
149 |
+
value=CITATION_BUTTON,
|
150 |
+
label=CITATION_BUTTON_LABEL,
|
151 |
+
elem_id="citation-button",
|
152 |
+
show_copy_button=True,
|
153 |
+
)
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
# Launch demo
|
157 |
+
demo.queue().launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
plotly
|
5 |
+
pandas
|
src/.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
src/__init__.py
ADDED
File without changes
|
src/assets.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
custom_css = """
|
2 |
+
.logo {
|
3 |
+
width: 300px;
|
4 |
+
height: auto;
|
5 |
+
margin: 0 auto;
|
6 |
+
max-width: 100%
|
7 |
+
object-fit: contain;
|
8 |
+
}
|
9 |
+
.text {
|
10 |
+
font-size: 16px !important;
|
11 |
+
}
|
12 |
+
|
13 |
+
.tabs button {
|
14 |
+
font-size: 20px;
|
15 |
+
}
|
16 |
+
.subtabs button {
|
17 |
+
font-size: 20px;
|
18 |
+
}
|
19 |
+
|
20 |
+
.descriptive-text span {
|
21 |
+
font-size: 16px !important;
|
22 |
+
}
|
23 |
+
|
24 |
+
#control-panel span {
|
25 |
+
font-size: 20px !important;
|
26 |
+
}
|
27 |
+
#search-bar span {
|
28 |
+
font-size: 16px !important;
|
29 |
+
}
|
30 |
+
#threshold-slider span {
|
31 |
+
font-size: 16px !important;
|
32 |
+
}
|
33 |
+
#memory-slider span {
|
34 |
+
font-size: 16px !important;
|
35 |
+
}
|
36 |
+
#columns-checkboxes span {
|
37 |
+
font-size: 16px !important;
|
38 |
+
}
|
39 |
+
#backend-checkboxes span {
|
40 |
+
font-size: 16px !important;
|
41 |
+
}
|
42 |
+
#dtype-checkboxes span {
|
43 |
+
font-size: 16px !important;
|
44 |
+
}
|
45 |
+
#optimization-checkboxes span {
|
46 |
+
font-size: 16px !important;
|
47 |
+
}
|
48 |
+
#quantization-checkboxes span {
|
49 |
+
font-size: 16px !important;
|
50 |
+
}
|
51 |
+
#kernel-checkboxes span {
|
52 |
+
font-size: 16px !important;
|
53 |
+
}
|
54 |
+
|
55 |
+
#leaderboard-table td:first-child,
|
56 |
+
#leaderboard-table th:first-child {
|
57 |
+
max-width: 300px;
|
58 |
+
overflow: auto;
|
59 |
+
white-space: nowrap;
|
60 |
+
}
|
61 |
+
"""
|
src/content.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LOGO = '<img src="https://raw.githubusercontent.com/prometheus-eval/leaderboard/main/logo.png">'
|
2 |
+
|
3 |
+
TITLE = """<h1 align="center" id="space-title">π€ BiGGen-Bench Leaderboard ποΈ</h1>"""
|
4 |
+
|
5 |
+
BGB_LOGO = '<img src="https://raw.githubusercontent.com/prometheus-eval/leaderboard/main/logo.png" alt="Logo" style="width: 30%; display: block; margin: auto;">'
|
6 |
+
BGB_TITLE = """<h1 align="center">BiGGen-Bench Leaderboard</h1>"""
|
7 |
+
|
8 |
+
|
9 |
+
ABOUT = """
|
10 |
+
## π About
|
11 |
+
### BiGGen-Bench Leaderboard
|
12 |
+
|
13 |
+
Welcome to the π BiGGen-Bench Leaderboard π, a dedicated benchmarking platform designed to evaluate the nuanced capabilities of Generative Language Models (GLMs) across a variety of complex and diverse tasks. Leveraging the refined methodologies of [BiGGen-Bench](https://github.com/prometheus-eval/prometheus-eval), our leaderboard offers a comprehensive assessment framework that mirrors human-like discernment and precision in evaluating language models.
|
14 |
+
|
15 |
+
#### Evaluation Details
|
16 |
+
|
17 |
+
- **Evaluation Scope**: Covers nine key capabilities of GLMs across 77 tasks, with 765 unique instances tailored to test specific aspects of model performance.
|
18 |
+
- **Scoring System**: Utilizes a detailed scoring rubric from 1 to 5, reflecting a range of outcomes based on instance-specific criteria closely aligned with the nuanced requirements of each task.
|
19 |
+
- **Hardware and Setup**: Benchmarks are conducted using a controlled setup to ensure consistent and fair comparison across different models.
|
20 |
+
- **Transparency and Openness**: All codes, data, and detailed evaluation results are publicly available to foster transparency and enable community-driven enhancements and verifications.
|
21 |
+
|
22 |
+
#### Benchmarking Script
|
23 |
+
|
24 |
+
All benchmarks are executed using the provided [code](https://github.com/prometheus-eval/prometheus-eval/blob/main/BiGGen-Bench) within the BiGGen-Bench repository. This script ensures that all models are evaluated under identical conditions, guaranteeing reliability and reproducibility of results.
|
25 |
+
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results."
|
30 |
+
CITATION_BUTTON = r"""TBA
|
31 |
+
"""
|
src/leaderboard.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from src.utils import model_hyperlink, process_score
|
4 |
+
|
5 |
+
LEADERBOARD_COLUMN_TO_DATATYPE = {
|
6 |
+
# open llm
|
7 |
+
"Model π€": "markdown",
|
8 |
+
"Experiment π§ͺ": "str",
|
9 |
+
# primary measurements
|
10 |
+
"Prefill (s)": "number",
|
11 |
+
"Decode (tokens/s)": "number",
|
12 |
+
"Memory (MB)": "number",
|
13 |
+
"Energy (tokens/kWh)": "number",
|
14 |
+
# deployment settings
|
15 |
+
"Backend π": "str",
|
16 |
+
"Precision π₯": "str",
|
17 |
+
"Quantization ποΈ": "str",
|
18 |
+
"Attention ποΈ": "str",
|
19 |
+
"Kernel βοΈ": "str",
|
20 |
+
# additional measurements
|
21 |
+
# "Reserved Memory (MB)": "number",
|
22 |
+
# "Used Memory (MB)": "number",
|
23 |
+
"Open LLM Score (%)": "number",
|
24 |
+
"End-to-End (s)": "number",
|
25 |
+
"Architecture ποΈ": "str",
|
26 |
+
"Params (B)": "number",
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
PRIMARY_COLUMNS = [
|
31 |
+
"Model π€",
|
32 |
+
"Experiment π§ͺ",
|
33 |
+
"Prefill (s)",
|
34 |
+
"Decode (tokens/s)",
|
35 |
+
"Memory (MB)",
|
36 |
+
"Energy (tokens/kWh)",
|
37 |
+
"Open LLM Score (%)",
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
CAPABILITY_COLUMNS = [
|
42 |
+
"Grounding β‘οΈ",
|
43 |
+
"Instruction Following π",
|
44 |
+
"Planning π
",
|
45 |
+
"Reasoning π‘",
|
46 |
+
"Refinement π©",
|
47 |
+
"Safety β οΈ",
|
48 |
+
"Theory of Mind π€",
|
49 |
+
"Tool Usage π οΈ",
|
50 |
+
"Multilingual π¬π«",
|
51 |
+
]
|
52 |
+
|
53 |
+
|
54 |
+
BGB_COLUMN_MAPPING = {
|
55 |
+
"model_name_or_path": "Model π€",
|
56 |
+
"average": "Average",
|
57 |
+
"grounding": "Grounding β‘οΈ",
|
58 |
+
"instruction_following": "Instruction Following π",
|
59 |
+
"planning": "Planning π
",
|
60 |
+
"reasoning": "Reasoning π‘",
|
61 |
+
"refinement": "Refinement π©",
|
62 |
+
"safety": "Safety β οΈ",
|
63 |
+
"theory_of_mind": "Theory of Mind π€",
|
64 |
+
"tool_usage": "Tool Usage π οΈ",
|
65 |
+
"multilingual": "Multilingual π¬π«",
|
66 |
+
"model_params": "Model Params (B)",
|
67 |
+
"model_type": "Model Type",
|
68 |
+
}
|
69 |
+
|
70 |
+
|
71 |
+
BGB_COLUMN_TO_DATATYPE = {
|
72 |
+
"Model π€": "markdown",
|
73 |
+
"Average": "number",
|
74 |
+
"Grounding β‘οΈ": "number",
|
75 |
+
"Instruction Following π": "number",
|
76 |
+
"Planning π
": "number",
|
77 |
+
"Reasoning π‘": "number",
|
78 |
+
"Refinement π©": "number",
|
79 |
+
"Safety β οΈ": "number",
|
80 |
+
"Theory of Mind π€": "number",
|
81 |
+
"Tool Usage π οΈ": "number",
|
82 |
+
"Multilingual π¬π«": "number",
|
83 |
+
"Model Params (B)": "number",
|
84 |
+
"Model Type": "str",
|
85 |
+
}
|
86 |
+
|
87 |
+
|
88 |
+
def process_model(model_name):
|
89 |
+
link = f"https://huggingface.co/{model_name}"
|
90 |
+
return model_hyperlink(link, model_name)
|
91 |
+
|
92 |
+
|
93 |
+
# TODO: Process base, chat, proprietary models differently
|
94 |
+
def process_bgb_model(row):
|
95 |
+
model_name = row.iloc[0]
|
96 |
+
model_type = row.iloc[1]
|
97 |
+
|
98 |
+
if model_type == "Base" or model_type == "Chat":
|
99 |
+
link = f"https://huggingface.co/{model_name}"
|
100 |
+
return model_hyperlink(link, model_name)
|
101 |
+
elif model_type == "Proprietary":
|
102 |
+
|
103 |
+
api_model_2_link = {
|
104 |
+
"gpt-3.5-turbo-1106": "https://platform.openai.com/docs/models/gpt-3-5",
|
105 |
+
"gpt-3.5-turbo-0125": "https://platform.openai.com/docs/models/gpt-3-5",
|
106 |
+
"gpt-4-0125-preview": "https://openai.com/blog/new-models-and-developer-products-announced-at-devday",
|
107 |
+
"gpt-4-1106-preview": "https://openai.com/blog/new-models-and-developer-products-announced-at-devday",
|
108 |
+
"gpt-4-turbo-2024-04-09": "https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4",
|
109 |
+
"gpt-4o-2024-05-13": "https://openai.com/index/hello-gpt-4o/",
|
110 |
+
"claude-3-haiku-20240307": "https://www.anthropic.com/news/claude-3-family",
|
111 |
+
"claude-3-opus-20240229": "https://www.anthropic.com/news/claude-3-family",
|
112 |
+
"claude-3-sonnet-20240229": "https://www.anthropic.com/news/claude-3-family",
|
113 |
+
"mistral-large": "https://mistral.ai/news/mistral-large/",
|
114 |
+
"mistral-medium": "https://mistral.ai/news/la-plateforme/",
|
115 |
+
"gemini-1.0-pro": "https://deepmind.google/technologies/gemini/pro/",
|
116 |
+
"gemini-pro-1.5": "https://deepmind.google/technologies/gemini/pro/",
|
117 |
+
"google/gemini-flash-1.5": "https://deepmind.google/technologies/gemini/flash/",
|
118 |
+
}
|
119 |
+
|
120 |
+
link = api_model_2_link[model_name]
|
121 |
+
return model_hyperlink(link, model_name)
|
122 |
+
|
123 |
+
else:
|
124 |
+
raise NotImplementedError(f"Model type {model_type} not implemented")
|
125 |
+
|
126 |
+
|
127 |
+
def get_leaderboard_df(llm_perf_df):
|
128 |
+
df = llm_perf_df.copy()
|
129 |
+
# transform for leaderboard
|
130 |
+
df["Model π€"] = df["Model π€"].apply(process_bgb_model)
|
131 |
+
# process quantization for leaderboard
|
132 |
+
df["Open LLM Score (%)"] = df.apply(lambda x: process_score(x["Open LLM Score (%)"], x["Quantization ποΈ"]), axis=1)
|
133 |
+
return df
|
134 |
+
|
135 |
+
|
136 |
+
def get_bgb_leaderboard_df(eval_df):
|
137 |
+
df = eval_df.copy()
|
138 |
+
# transform for leaderboard
|
139 |
+
df["Model π€"] = df[["Model π€", "Model Type"]].apply(process_bgb_model, axis=1)
|
140 |
+
return df
|
141 |
+
|
142 |
+
|
143 |
+
def create_leaderboard_table(llm_perf_df):
|
144 |
+
# get dataframe
|
145 |
+
leaderboard_df = get_leaderboard_df(llm_perf_df)
|
146 |
+
|
147 |
+
# create search bar
|
148 |
+
with gr.Row():
|
149 |
+
search_bar = gr.Textbox(
|
150 |
+
label="Model π€",
|
151 |
+
info="π Search for a model name",
|
152 |
+
elem_id="search-bar",
|
153 |
+
)
|
154 |
+
# create checkboxes
|
155 |
+
with gr.Row():
|
156 |
+
columns_checkboxes = gr.CheckboxGroup(
|
157 |
+
label="Columns π",
|
158 |
+
value=PRIMARY_COLUMNS,
|
159 |
+
choices=list(LEADERBOARD_COLUMN_TO_DATATYPE.keys()),
|
160 |
+
info="βοΈ Select the columns to display",
|
161 |
+
elem_id="columns-checkboxes",
|
162 |
+
)
|
163 |
+
# create table
|
164 |
+
leaderboard_table = gr.components.Dataframe(
|
165 |
+
value=leaderboard_df[PRIMARY_COLUMNS],
|
166 |
+
datatype=list(LEADERBOARD_COLUMN_TO_DATATYPE.values()),
|
167 |
+
headers=list(LEADERBOARD_COLUMN_TO_DATATYPE.keys()),
|
168 |
+
elem_id="leaderboard-table",
|
169 |
+
)
|
170 |
+
|
171 |
+
return search_bar, columns_checkboxes, leaderboard_table
|
172 |
+
|
173 |
+
|
174 |
+
def create_bgb_leaderboard_table(eval_df):
|
175 |
+
# get dataframe
|
176 |
+
bgb_leaderboard_df = get_bgb_leaderboard_df(eval_df)
|
177 |
+
|
178 |
+
# create search bar
|
179 |
+
with gr.Row():
|
180 |
+
search_bar = gr.Textbox(
|
181 |
+
label="Model π€",
|
182 |
+
info="π Search for a model name",
|
183 |
+
elem_id="search-bar",
|
184 |
+
)
|
185 |
+
|
186 |
+
with gr.Row():
|
187 |
+
type_checkboxes = gr.CheckboxGroup(
|
188 |
+
label="Model Type",
|
189 |
+
value=["Base", "Chat", "Proprietary"],
|
190 |
+
choices=["Base", "Chat", "Proprietary"],
|
191 |
+
info="βοΈ Select the capabilities to display",
|
192 |
+
elem_id="type-checkboxes",
|
193 |
+
)
|
194 |
+
|
195 |
+
with gr.Row():
|
196 |
+
param_slider = gr.Slider(
|
197 |
+
minimum=0, maximum=150, value=7, step=1, interactive=True, label="Model Params (B)", elem_id="param-slider"
|
198 |
+
)
|
199 |
+
|
200 |
+
# create checkboxes
|
201 |
+
with gr.Row():
|
202 |
+
columns_checkboxes = gr.CheckboxGroup(
|
203 |
+
label="Capabilities π",
|
204 |
+
value=CAPABILITY_COLUMNS,
|
205 |
+
choices=CAPABILITY_COLUMNS,
|
206 |
+
info="βοΈ Select the capabilities to display",
|
207 |
+
elem_id="columns-checkboxes",
|
208 |
+
)
|
209 |
+
|
210 |
+
# create table
|
211 |
+
bgb_leaderboard_table = gr.components.Dataframe(
|
212 |
+
value=bgb_leaderboard_df[list(BGB_COLUMN_MAPPING.values())],
|
213 |
+
datatype=list(BGB_COLUMN_TO_DATATYPE.values()),
|
214 |
+
headers=list(BGB_COLUMN_MAPPING.keys()),
|
215 |
+
elem_id="leaderboard-table",
|
216 |
+
)
|
217 |
+
|
218 |
+
return search_bar, columns_checkboxes, type_checkboxes, param_slider, bgb_leaderboard_table
|
src/llm_perf.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from src.model_list import MODEL_MAPPING, MODEL_SHORT_TO_LONG, get_all_model_list
|
7 |
+
from src.utils import process_kernels, process_quantizations
|
8 |
+
|
9 |
+
COLUMNS_MAPPING = {
|
10 |
+
"config.name": "Experiment π§ͺ",
|
11 |
+
"config.backend.model": "Model π€",
|
12 |
+
# primary measurements
|
13 |
+
"report.prefill.latency.p50": "Prefill (s)",
|
14 |
+
"report.per_token.latency.p50": "Per Token (s)",
|
15 |
+
"report.decode.throughput.value": "Decode (tokens/s)",
|
16 |
+
"report.decode.efficiency.value": "Energy (tokens/kWh)",
|
17 |
+
"report.decode.memory.max_allocated": "Memory (MB)",
|
18 |
+
# deployment settings
|
19 |
+
"config.backend.name": "Backend π",
|
20 |
+
"config.backend.torch_dtype": "Precision π₯",
|
21 |
+
"quantization": "Quantization ποΈ",
|
22 |
+
"attention": "Attention ποΈ",
|
23 |
+
"kernel": "Kernel βοΈ",
|
24 |
+
# additional information
|
25 |
+
"architecture": "Architecture ποΈ",
|
26 |
+
"prefill+decode": "End-to-End (s)",
|
27 |
+
"Average β¬οΈ": "Open LLM Score (%)",
|
28 |
+
"#Params (B)": "Params (B)",
|
29 |
+
}
|
30 |
+
SORTING_COLUMNS = ["Open LLM Score (%)", "Decode (tokens/s)", "Prefill (s)"]
|
31 |
+
SUBSETS = ["unquantized", "awq", "bnb", "gptq"]
|
32 |
+
SORTING_ASCENDING = [False, True, False]
|
33 |
+
|
34 |
+
BGB_SORTING_COLUMNS = ["Average"]
|
35 |
+
|
36 |
+
# Use the above capabilities to create the columns
|
37 |
+
BGB_COLUMNS_MAPPING = {
|
38 |
+
"model_name_or_path": "Model π€",
|
39 |
+
"model_params": "Model Params (B)",
|
40 |
+
"model_type": "Model Type",
|
41 |
+
"average": "Average",
|
42 |
+
"grounding": "Grounding β‘οΈ",
|
43 |
+
"instruction_following": "Instruction Following π",
|
44 |
+
"planning": "Planning π
",
|
45 |
+
"reasoning": "Reasoning π‘",
|
46 |
+
"refinement": "Refinement π©",
|
47 |
+
"safety": "Safety β οΈ",
|
48 |
+
"theory_of_mind": "Theory of Mind π€",
|
49 |
+
"tool_usage": "Tool Usage π οΈ",
|
50 |
+
"multilingual": "Multilingual π¬π«",
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
def get_raw_llm_perf_df(machine: str = "1xA10"):
|
55 |
+
dfs = []
|
56 |
+
for subset in SUBSETS:
|
57 |
+
try:
|
58 |
+
dfs.append(
|
59 |
+
pd.read_csv(f"hf://datasets/optimum-benchmark/llm-perf-leaderboard/perf-df-{subset}-{machine}.csv")
|
60 |
+
)
|
61 |
+
except Exception:
|
62 |
+
print(f"Subset {subset} for machine {machine} not found")
|
63 |
+
|
64 |
+
perf_df = pd.concat(dfs)
|
65 |
+
llm_df = pd.read_csv("hf://datasets/optimum-benchmark/llm-perf-leaderboard/llm-df.csv")
|
66 |
+
|
67 |
+
llm_perf_df = pd.merge(llm_df, perf_df, left_on="Model", right_on="config.backend.model")
|
68 |
+
|
69 |
+
return llm_perf_df
|
70 |
+
|
71 |
+
|
72 |
+
def processed_llm_perf_df(llm_perf_df):
|
73 |
+
# some assertions
|
74 |
+
assert llm_perf_df["config.scenario.input_shapes.batch_size"].nunique() == 1
|
75 |
+
assert llm_perf_df["config.scenario.input_shapes.sequence_length"].nunique() == 1
|
76 |
+
assert llm_perf_df["config.scenario.generate_kwargs.max_new_tokens"].nunique() == 1
|
77 |
+
assert llm_perf_df["config.scenario.generate_kwargs.min_new_tokens"].nunique() == 1
|
78 |
+
# fix couple stuff
|
79 |
+
llm_perf_df.dropna(subset=["report.decode.latency.p50"], inplace=True)
|
80 |
+
llm_perf_df["config.name"] = llm_perf_df["config.name"].str.replace("flash_attention_2", "fa2")
|
81 |
+
llm_perf_df["prefill+decode"] = llm_perf_df["report.prefill.latency.p50"] + (
|
82 |
+
llm_perf_df["report.decode.latency.p50"]
|
83 |
+
)
|
84 |
+
# llm_perf_df["architecture"] = llm_perf_df["config.backend.model"].apply(
|
85 |
+
# process_architectures
|
86 |
+
# )
|
87 |
+
llm_perf_df["architecture"] = llm_perf_df["Architecture"]
|
88 |
+
llm_perf_df["attention"] = (
|
89 |
+
llm_perf_df["config.backend.attn_implementation"]
|
90 |
+
.str.replace("flash_attention_2", "FAv2")
|
91 |
+
.str.replace("eager", "Eager")
|
92 |
+
.str.replace("sdpa", "SDPA")
|
93 |
+
)
|
94 |
+
llm_perf_df["quantization"] = llm_perf_df.apply(process_quantizations, axis=1)
|
95 |
+
llm_perf_df["kernel"] = llm_perf_df.apply(process_kernels, axis=1)
|
96 |
+
# round numerical columns
|
97 |
+
llm_perf_df = llm_perf_df.round(
|
98 |
+
{
|
99 |
+
"report.prefill.latency.p50": 3,
|
100 |
+
"report.decode.latency.p50": 3,
|
101 |
+
"report.decode.throughput.value": 3,
|
102 |
+
"report.decode.efficiency.value": 3,
|
103 |
+
"report.decode.memory.max_allocated": 3,
|
104 |
+
"Average β¬οΈ": 3,
|
105 |
+
"prefill+decode": 3,
|
106 |
+
"#Params (B)": 3,
|
107 |
+
}
|
108 |
+
)
|
109 |
+
# filter columns
|
110 |
+
llm_perf_df = llm_perf_df[list(COLUMNS_MAPPING.keys())]
|
111 |
+
# rename columns
|
112 |
+
llm_perf_df.rename(columns=COLUMNS_MAPPING, inplace=True)
|
113 |
+
# sort by metric
|
114 |
+
llm_perf_df.sort_values(
|
115 |
+
by=SORTING_COLUMNS,
|
116 |
+
ascending=SORTING_ASCENDING,
|
117 |
+
inplace=True,
|
118 |
+
)
|
119 |
+
|
120 |
+
return llm_perf_df
|
121 |
+
|
122 |
+
|
123 |
+
def get_llm_perf_df(machine: str = "1xA10"):
|
124 |
+
if os.path.exists(f"llm-perf-leaderboard-{machine}.csv"):
|
125 |
+
llm_perf_df = pd.read_csv(f"llm-perf-leaderboard-{machine}.csv")
|
126 |
+
else:
|
127 |
+
llm_perf_df = get_raw_llm_perf_df(machine)
|
128 |
+
llm_perf_df = processed_llm_perf_df(llm_perf_df)
|
129 |
+
llm_perf_df.to_csv(f"llm-perf-leaderboard-{machine}.csv", index=False)
|
130 |
+
|
131 |
+
return llm_perf_df
|
132 |
+
|
133 |
+
|
134 |
+
def get_eval_df(eval_model_name: str):
|
135 |
+
|
136 |
+
assert eval_model_name in ["gpt-4-turbo-2024-04-09", "prometheus-bgb-8x7b-v2.0"]
|
137 |
+
|
138 |
+
base_dir = Path(__file__).parent.parent / "data"
|
139 |
+
filepath = base_dir / f"bgb-leaderboard-{eval_model_name}.pkl"
|
140 |
+
# For debugging
|
141 |
+
csv_filepath = base_dir / f"bgb-leaderboard-{eval_model_name}.csv"
|
142 |
+
|
143 |
+
def change_model_name(model_name: str):
|
144 |
+
# TODO: Hard code models with different names
|
145 |
+
model_name_or_path = MODEL_SHORT_TO_LONG.get(model_name, model_name)
|
146 |
+
if model_name == "qwen/qwen-110b-chat":
|
147 |
+
model_name_or_path = "Qwen/Qwen1.5-110B-Chat"
|
148 |
+
|
149 |
+
if model_name_or_path.endswith("-hjpark"):
|
150 |
+
model_name_or_path = model_name_or_path.replace("-hjpark", "")
|
151 |
+
|
152 |
+
return model_name_or_path
|
153 |
+
|
154 |
+
if os.path.exists(filepath) and False:
|
155 |
+
eval_df = pd.read_pickle(filepath)
|
156 |
+
else:
|
157 |
+
# Process the df
|
158 |
+
raw_filepath = base_dir / f"eval_by_{eval_model_name}.csv"
|
159 |
+
eval_df = pd.read_csv(raw_filepath)
|
160 |
+
|
161 |
+
eval_df["model_name_or_path"] = eval_df["model_name"].apply(lambda x: change_model_name(x))
|
162 |
+
eval_df.drop(columns=["model_name"], inplace=True)
|
163 |
+
|
164 |
+
eval_df["model_params"] = eval_df["model_name_or_path"].apply(
|
165 |
+
lambda x: MODEL_MAPPING.get(x, ["Unknown", "Unknown"])[0]
|
166 |
+
)
|
167 |
+
eval_df["model_type"] = eval_df["model_name_or_path"].apply(
|
168 |
+
lambda x: MODEL_MAPPING.get(x, ["Unknown", "Unknown"])[1]
|
169 |
+
)
|
170 |
+
|
171 |
+
capabilities = [
|
172 |
+
"grounding",
|
173 |
+
"instruction_following",
|
174 |
+
"planning",
|
175 |
+
"reasoning",
|
176 |
+
"refinement",
|
177 |
+
"safety",
|
178 |
+
"theory_of_mind",
|
179 |
+
"tool_usage",
|
180 |
+
"multilingual",
|
181 |
+
]
|
182 |
+
|
183 |
+
# Make the average of the capabilities
|
184 |
+
eval_df["average"] = eval_df[capabilities].mean(axis=1)
|
185 |
+
|
186 |
+
# Round to 3 decimal places for capabilities and average
|
187 |
+
eval_df = eval_df.round(
|
188 |
+
{
|
189 |
+
"average": 3,
|
190 |
+
"grounding": 3,
|
191 |
+
"instruction_following": 3,
|
192 |
+
"planning": 3,
|
193 |
+
"reasoning": 3,
|
194 |
+
"refinement": 3,
|
195 |
+
"safety": 3,
|
196 |
+
"theory_of_mind": 3,
|
197 |
+
"tool_usage": 3,
|
198 |
+
"multilingual": 3,
|
199 |
+
}
|
200 |
+
)
|
201 |
+
|
202 |
+
# print(eval_df[eval_df['model_params'] == 'Unknown'])
|
203 |
+
eval_df.rename(columns=BGB_COLUMNS_MAPPING, inplace=True)
|
204 |
+
|
205 |
+
eval_df.sort_values(
|
206 |
+
by=BGB_SORTING_COLUMNS,
|
207 |
+
ascending=False,
|
208 |
+
inplace=True,
|
209 |
+
)
|
210 |
+
|
211 |
+
eval_df.to_pickle(str(filepath))
|
212 |
+
eval_df.to_csv(str(csv_filepath), index=False)
|
213 |
+
# import pdb; pdb.set_trace()
|
214 |
+
|
215 |
+
return eval_df
|
216 |
+
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
get_eval_df("gpt-4-turbo-2024-04-09")
|
220 |
+
get_eval_df("prometheus-bgb-8x7b-v2.0")
|
src/model_card.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from collections import defaultdict
|
5 |
+
from datetime import datetime, timedelta, timezone
|
6 |
+
|
7 |
+
import huggingface_hub
|
8 |
+
from huggingface_hub import ModelCard
|
9 |
+
from huggingface_hub.hf_api import ModelInfo, get_safetensors_metadata
|
10 |
+
from transformers import AutoConfig, AutoTokenizer
|
11 |
+
|
12 |
+
|
13 |
+
# ht to @Wauplin, thank you for the snippet!
|
14 |
+
# See https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/discussions/317
|
15 |
+
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
16 |
+
# Returns operation status, and error message
|
17 |
+
try:
|
18 |
+
card = ModelCard.load(repo_id)
|
19 |
+
except huggingface_hub.utils.EntryNotFoundError:
|
20 |
+
return False, "Please add a model card to your model to explain how you trained/fine-tuned it.", None
|
21 |
+
|
22 |
+
# Enforce license metadata
|
23 |
+
if card.data.license is None:
|
24 |
+
if not ("license_name" in card.data and "license_link" in card.data):
|
25 |
+
return (
|
26 |
+
False,
|
27 |
+
(
|
28 |
+
"License not found. Please add a license to your model card using the `license` metadata or a"
|
29 |
+
" `license_name`/`license_link` pair."
|
30 |
+
),
|
31 |
+
None,
|
32 |
+
)
|
33 |
+
|
34 |
+
# Enforce card content
|
35 |
+
if len(card.text) < 200:
|
36 |
+
return False, "Please add a description to your model card, it is too short.", None
|
37 |
+
|
38 |
+
return True, "", card
|
39 |
+
|
40 |
+
|
41 |
+
def is_model_on_hub(
|
42 |
+
model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False
|
43 |
+
) -> tuple[bool, str, AutoConfig]:
|
44 |
+
try:
|
45 |
+
config = AutoConfig.from_pretrained(
|
46 |
+
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
|
47 |
+
) # , force_download=True)
|
48 |
+
if test_tokenizer:
|
49 |
+
try:
|
50 |
+
tk = AutoTokenizer.from_pretrained(
|
51 |
+
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
|
52 |
+
)
|
53 |
+
except ValueError as e:
|
54 |
+
return (False, f"uses a tokenizer which is not in a transformers release: {e}", None)
|
55 |
+
except Exception:
|
56 |
+
return (
|
57 |
+
False,
|
58 |
+
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
|
59 |
+
None,
|
60 |
+
)
|
61 |
+
return True, None, config
|
62 |
+
|
63 |
+
except ValueError:
|
64 |
+
return (
|
65 |
+
False,
|
66 |
+
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
67 |
+
None,
|
68 |
+
)
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
if "You are trying to access a gated repo." in str(e):
|
72 |
+
return True, "uses a gated model.", None
|
73 |
+
return False, f"was not found or misconfigured on the hub! Error raised was {e.args[0]}", None
|
74 |
+
|
75 |
+
|
76 |
+
def get_model_size(model_info: ModelInfo, precision: str):
|
77 |
+
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
|
78 |
+
safetensors = None
|
79 |
+
try:
|
80 |
+
safetensors = get_safetensors_metadata(model_info.id)
|
81 |
+
except Exception as e:
|
82 |
+
print(e)
|
83 |
+
|
84 |
+
if safetensors is not None:
|
85 |
+
model_size = round(sum(safetensors.parameter_count.values()) / 1e9, 3)
|
86 |
+
else:
|
87 |
+
try:
|
88 |
+
size_match = re.search(size_pattern, model_info.id.lower())
|
89 |
+
model_size = size_match.group(0)
|
90 |
+
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
91 |
+
except AttributeError:
|
92 |
+
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
93 |
+
|
94 |
+
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.id.lower()) else 1
|
95 |
+
model_size = size_factor * model_size
|
96 |
+
return model_size
|
97 |
+
|
98 |
+
|
99 |
+
def get_model_arch(model_info: ModelInfo):
|
100 |
+
return model_info.config.get("architectures", "Unknown")
|
101 |
+
|
102 |
+
|
103 |
+
def get_model_tags(model_card, model: str):
|
104 |
+
is_merge_from_metadata = False
|
105 |
+
is_moe_from_metadata = False
|
106 |
+
|
107 |
+
tags = []
|
108 |
+
if model_card is None:
|
109 |
+
return tags
|
110 |
+
if model_card.data.tags:
|
111 |
+
is_merge_from_metadata = any(
|
112 |
+
[tag in model_card.data.tags for tag in ["merge", "moerge", "mergekit", "lazymergekit"]]
|
113 |
+
)
|
114 |
+
is_moe_from_metadata = any([tag in model_card.data.tags for tag in ["moe", "moerge"]])
|
115 |
+
|
116 |
+
is_merge_from_model_card = any(
|
117 |
+
keyword in model_card.text.lower() for keyword in ["merged model", "merge model", "moerge"]
|
118 |
+
)
|
119 |
+
if is_merge_from_model_card or is_merge_from_metadata:
|
120 |
+
tags.append("merge")
|
121 |
+
is_moe_from_model_card = any(keyword in model_card.text.lower() for keyword in ["moe", "mixtral"])
|
122 |
+
# Hardcoding because of gating problem
|
123 |
+
if "Qwen/Qwen1.5-32B" in model:
|
124 |
+
is_moe_from_model_card = False
|
125 |
+
is_moe_from_name = "moe" in model.lower().replace("/", "-").replace("_", "-").split("-")
|
126 |
+
if is_moe_from_model_card or is_moe_from_name or is_moe_from_metadata:
|
127 |
+
tags.append("moe")
|
128 |
+
|
129 |
+
return tags
|
130 |
+
|
131 |
+
|
132 |
+
def test():
|
133 |
+
model = "meta-llama/Meta-Llama-3-8B-Instruct"
|
134 |
+
|
135 |
+
# Test check_model_card
|
136 |
+
status, error, card = check_model_card(model)
|
137 |
+
|
138 |
+
# Test is_model_on_hub
|
139 |
+
status2, error2, config2 = is_model_on_hub(model, "main")
|
140 |
+
assert status == True
|
141 |
+
print(status2, error2, config2)
|
142 |
+
|
143 |
+
# Test get_model_size
|
144 |
+
model_info = ModelInfo(id=model)
|
145 |
+
precision = "GPTQ"
|
146 |
+
model_size = get_model_size(model_info, precision)
|
147 |
+
print(model_size)
|
148 |
+
|
149 |
+
import pdb
|
150 |
+
|
151 |
+
pdb.set_trace()
|
152 |
+
|
153 |
+
# Test get_model_arch
|
154 |
+
# model_arch = get_model_arch(model_info)
|
155 |
+
|
156 |
+
pass
|
157 |
+
|
158 |
+
|
159 |
+
if __name__ == "__main__":
|
160 |
+
test()
|
src/model_list.py
ADDED
@@ -0,0 +1,529 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODELS = {
|
2 |
+
"pretrained": {
|
3 |
+
"<=4B": [
|
4 |
+
"microsoft/phi-1",
|
5 |
+
"microsoft/phi-1_5",
|
6 |
+
"microsoft/phi-2",
|
7 |
+
"Qwen/Qwen1.5-0.5B",
|
8 |
+
"Qwen/Qwen1.5-1.8B",
|
9 |
+
"Qwen/Qwen1.5-4B",
|
10 |
+
"google/gemma-2b",
|
11 |
+
"allenai/OLMo-1B",
|
12 |
+
],
|
13 |
+
"<=7B": [
|
14 |
+
"google/gemma-7b",
|
15 |
+
"mistralai/Mistral-7B-v0.1",
|
16 |
+
"Qwen/Qwen1.5-7B",
|
17 |
+
"01-ai/Yi-6B",
|
18 |
+
"meta-llama/Llama-2-7b-hf",
|
19 |
+
"codellama/CodeLlama-7b-hf",
|
20 |
+
"EleutherAI/llemma_7b",
|
21 |
+
"allenai/OLMo-7B",
|
22 |
+
"mistral-community/Mistral-7B-v0.2",
|
23 |
+
],
|
24 |
+
"<=14B": [
|
25 |
+
"Qwen/Qwen1.5-14B",
|
26 |
+
"meta-llama/Llama-2-13b-hf",
|
27 |
+
"codellama/CodeLlama-13b-hf",
|
28 |
+
"upstage/SOLAR-10.7B-v1.0",
|
29 |
+
"meta-llama/Meta-Llama-3-8B",
|
30 |
+
],
|
31 |
+
"<=50B": [
|
32 |
+
"01-ai/Yi-34B",
|
33 |
+
"EleutherAI/llemma_34b",
|
34 |
+
"codellama/CodeLlama-34b-hf",
|
35 |
+
"mistralai/Mixtral-8x7B-v0.1",
|
36 |
+
"Qwen/Qwen1.5-32B",
|
37 |
+
],
|
38 |
+
"<=75B": [
|
39 |
+
"meta-llama/Llama-2-70b-hf",
|
40 |
+
"codellama/CodeLlama-70b-hf",
|
41 |
+
"meta-llama/Meta-Llama-3-70B",
|
42 |
+
"Qwen/Qwen1.5-72B",
|
43 |
+
],
|
44 |
+
"<=175B": [
|
45 |
+
"mistral-community/Mixtral-8x22B-v0.1-AWQ",
|
46 |
+
],
|
47 |
+
},
|
48 |
+
"instruction_tuned": {
|
49 |
+
"<=4B": [
|
50 |
+
"Qwen/Qwen1.5-0.5B-Chat",
|
51 |
+
"Qwen/Qwen1.5-1.8B-Chat",
|
52 |
+
"Qwen/Qwen1.5-4B-Chat",
|
53 |
+
"google/gemma-2b-it",
|
54 |
+
"google/gemma-1.1-2b-it",
|
55 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
56 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
57 |
+
],
|
58 |
+
"<=7B": [
|
59 |
+
"google/gemma-7b-it",
|
60 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
61 |
+
"Qwen/Qwen1.5-7B-Chat",
|
62 |
+
"01-ai/Yi-6B-Chat",
|
63 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
64 |
+
"codellama/CodeLlama-7b-Instruct-hf",
|
65 |
+
"allenai/OLMo-7B-SFT",
|
66 |
+
"allenai/OLMo-7B-Instruct",
|
67 |
+
"allenai/tulu-2-7b",
|
68 |
+
"allenai/tulu-2-dpo-7b",
|
69 |
+
"allenai/codetulu-2-7b",
|
70 |
+
"microsoft/Orca-2-7b",
|
71 |
+
"openchat/openchat-3.5-0106",
|
72 |
+
"teknium/OpenHermes-2-Mistral-7B",
|
73 |
+
"teknium/OpenHermes-2.5-Mistral-7B",
|
74 |
+
"NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
|
75 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
76 |
+
"berkeley-nest/Starling-LM-7B-alpha",
|
77 |
+
"Nexusflow/Starling-LM-7B-beta",
|
78 |
+
"kaist-ai/mistral-orpo-alpha",
|
79 |
+
"kaist-ai/mistral-orpo-beta",
|
80 |
+
"google/gemma-1.1-7b-it",
|
81 |
+
],
|
82 |
+
"<=14B": [
|
83 |
+
"Qwen/Qwen1.5-14B-Chat",
|
84 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
85 |
+
"codellama/CodeLlama-13b-Instruct-hf",
|
86 |
+
"allenai/tulu-2-13b",
|
87 |
+
"allenai/tulu-2-dpo-13b",
|
88 |
+
"allenai/codetulu-2-13b",
|
89 |
+
"microsoft/Orca-2-13b",
|
90 |
+
"upstage/SOLAR-10.7B-Instruct-v1.0",
|
91 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
92 |
+
"CohereForAI/aya-101",
|
93 |
+
],
|
94 |
+
"<=50B": [
|
95 |
+
"01-ai/Yi-34B-Chat",
|
96 |
+
"codellama/CodeLlama-34b-Instruct-hf",
|
97 |
+
"allenai/codetulu-2-34b",
|
98 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
99 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT",
|
100 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
101 |
+
"NousResearch/Nous-Hermes-2-Yi-34B",
|
102 |
+
"CohereForAI/c4ai-command-r-v01",
|
103 |
+
"Qwen/Qwen1.5-32B-Chat",
|
104 |
+
],
|
105 |
+
"<=75B": [
|
106 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
107 |
+
"codellama/CodeLlama-70b-Instruct-hf",
|
108 |
+
"Qwen/Qwen1.5-72B-Chat",
|
109 |
+
"allenai/tulu-2-dpo-70b",
|
110 |
+
"meta-llama/Meta-Llama-3-70B-Instruct",
|
111 |
+
],
|
112 |
+
"<=175B": [
|
113 |
+
"alpindale/c4ai-command-r-plus-GPTQ",
|
114 |
+
"MaziyarPanahi/zephyr-orpo-141b-A35b-v0.1-AWQ",
|
115 |
+
"MaziyarPanahi/Mixtral-8x22B-Instruct-v0.1-AWQ",
|
116 |
+
],
|
117 |
+
},
|
118 |
+
}
|
119 |
+
|
120 |
+
API_MODELS = [
|
121 |
+
"gpt-3.5-turbo-0125",
|
122 |
+
"gpt-3.5-turbo-1106",
|
123 |
+
"gpt-4-0125-preview",
|
124 |
+
"gpt-4-1106-preview",
|
125 |
+
"gpt-4-turbo-2024-04-09",
|
126 |
+
"gpt-4o-2024-05-13",
|
127 |
+
"claude-3-haiku-20240307",
|
128 |
+
"claude-3-opus-20240229",
|
129 |
+
"claude-3-sonnet-20240229",
|
130 |
+
"mistral-large",
|
131 |
+
"mistral-medium",
|
132 |
+
"gemini-1.0-pro",
|
133 |
+
"gemini-pro-1.5",
|
134 |
+
"google/gemini-flash-1.5",
|
135 |
+
"qwen/qwen-110b-chat",
|
136 |
+
]
|
137 |
+
|
138 |
+
|
139 |
+
ORDERED_MODELS = [
|
140 |
+
"microsoft/phi-1",
|
141 |
+
"microsoft/phi-1_5",
|
142 |
+
"microsoft/phi-2",
|
143 |
+
"Qwen/Qwen1.5-0.5B",
|
144 |
+
"Qwen/Qwen1.5-1.8B",
|
145 |
+
"Qwen/Qwen1.5-4B",
|
146 |
+
"google/gemma-2b",
|
147 |
+
"allenai/OLMo-1B",
|
148 |
+
"Qwen/Qwen1.5-0.5B-Chat",
|
149 |
+
"Qwen/Qwen1.5-1.8B-Chat",
|
150 |
+
"Qwen/Qwen1.5-4B-Chat",
|
151 |
+
"microsoft/Phi-3-mini-4k-instruct",
|
152 |
+
"microsoft/Phi-3-mini-128k-instruct",
|
153 |
+
"google/gemma-2b-it",
|
154 |
+
"google/gemma-1.1-2b-it",
|
155 |
+
"google/gemma-7b",
|
156 |
+
"mistralai/Mistral-7B-v0.1",
|
157 |
+
"mistral-community/Mistral-7B-v0.2",
|
158 |
+
"Qwen/Qwen1.5-7B",
|
159 |
+
"01-ai/Yi-6B",
|
160 |
+
"meta-llama/Llama-2-7b-hf",
|
161 |
+
"codellama/CodeLlama-7b-hf",
|
162 |
+
"meta-llama/Meta-Llama-3-8B",
|
163 |
+
"EleutherAI/llemma_7b",
|
164 |
+
"allenai/OLMo-7B",
|
165 |
+
"google/gemma-7b-it",
|
166 |
+
"google/gemma-1.1-7b-it",
|
167 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
168 |
+
"Qwen/Qwen1.5-7B-Chat",
|
169 |
+
"01-ai/Yi-6B-Chat",
|
170 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
171 |
+
"codellama/CodeLlama-7b-Instruct-hf",
|
172 |
+
"meta-llama/Meta-Llama-3-8B-Instruct",
|
173 |
+
"allenai/OLMo-7B-SFT",
|
174 |
+
"allenai/OLMo-7B-Instruct",
|
175 |
+
"allenai/tulu-2-7b",
|
176 |
+
"allenai/tulu-2-dpo-7b",
|
177 |
+
"allenai/codetulu-2-7b",
|
178 |
+
"microsoft/Orca-2-7b",
|
179 |
+
"openchat/openchat-3.5-0106",
|
180 |
+
"teknium/OpenHermes-2-Mistral-7B",
|
181 |
+
"teknium/OpenHermes-2.5-Mistral-7B",
|
182 |
+
"NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
|
183 |
+
"Starling-LM-7B-alpha",
|
184 |
+
"Starling-LM-7B-beta",
|
185 |
+
"kaist-ai/mistral-orpo-alpha",
|
186 |
+
"kaist-ai/mistral-orpo-beta",
|
187 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
188 |
+
"Qwen/Qwen1.5-14B",
|
189 |
+
"meta-llama/Llama-2-13b-hf",
|
190 |
+
"codellama/CodeLlama-13b-hf",
|
191 |
+
"upstage/SOLAR-10.7B-v1.0",
|
192 |
+
"Qwen/Qwen1.5-14B-Chat",
|
193 |
+
"upstage/SOLAR-10.7B-Instruct-v1.0",
|
194 |
+
"CohereForAI/aya-101",
|
195 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
196 |
+
"codellama/CodeLlama-13b-Instruct-hf",
|
197 |
+
"allenai/tulu-2-13b",
|
198 |
+
"allenai/tulu-2-dpo-13b",
|
199 |
+
"allenai/codetulu-2-13b",
|
200 |
+
"microsoft/Orca-2-13b",
|
201 |
+
"01-ai/Yi-34B",
|
202 |
+
"EleutherAI/llemma_34b",
|
203 |
+
"Qwen/Qwen1.5-32B",
|
204 |
+
"codellama/CodeLlama-34b-hf",
|
205 |
+
"mistralai/Mixtral-8x7B-v0.1",
|
206 |
+
"01-ai/Yi-34B-Chat",
|
207 |
+
"NousResearch/Nous-Hermes-2-Yi-34B",
|
208 |
+
"codellama/CodeLlama-34b-Instruct-hf",
|
209 |
+
"allenai/codetulu-2-34b",
|
210 |
+
"Qwen/Qwen1.5-32B-Chat",
|
211 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
212 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT",
|
213 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
214 |
+
"CohereForAI/c4ai-command-r-v01",
|
215 |
+
"meta-llama/Llama-2-70b-hf",
|
216 |
+
"codellama/CodeLlama-70b-hf",
|
217 |
+
"mistral-community/Mixtral-8x22B-v0.1-AWQ",
|
218 |
+
"meta-llama/Meta-Llama-3-70B",
|
219 |
+
"Qwen/Qwen1.5-72B",
|
220 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
221 |
+
"codellama/CodeLlama-70b-Instruct-hf",
|
222 |
+
"allenai/tulu-2-dpo-70b",
|
223 |
+
"alpindale/c4ai-command-r-plus-GPTQ",
|
224 |
+
"meta-llama/Meta-Llama-3-70B-Instruct",
|
225 |
+
"MaziyarPanahi/Mixtral-8x22B-Instruct-v0.1-AWQ",
|
226 |
+
"MaziyarPanahi/zephyr-orpo-141b-A35b-v0.1-AWQ",
|
227 |
+
"Qwen/Qwen1.5-72B-Chat",
|
228 |
+
"qwen/qwen-110b-chat",
|
229 |
+
"gpt-3.5-turbo-1106",
|
230 |
+
"gpt-3.5-turbo-0125",
|
231 |
+
"gpt-4-1106-preview",
|
232 |
+
"gpt-4-0125-preview",
|
233 |
+
"gpt-4-turbo-2024-04-09",
|
234 |
+
"gpt-4o-2024-05-13",
|
235 |
+
"mistral-medium",
|
236 |
+
"mistral-large",
|
237 |
+
"gemini-1.0-pro",
|
238 |
+
"gemini-pro-1.5",
|
239 |
+
"google/gemini-flash-1.5",
|
240 |
+
"claude-3-haiku-20240307",
|
241 |
+
"claude-3-sonnet-20240229",
|
242 |
+
"claude-3-opus-20240229",
|
243 |
+
]
|
244 |
+
|
245 |
+
|
246 |
+
bgb_trained_models = [
|
247 |
+
"microsoft/phi-1",
|
248 |
+
"microsoft/phi-1_5",
|
249 |
+
"microsoft/phi-2",
|
250 |
+
"Qwen/Qwen1.5-0.5B",
|
251 |
+
"Qwen/Qwen1.5-1.8B",
|
252 |
+
"Qwen/Qwen1.5-4B",
|
253 |
+
"google/gemma-2b",
|
254 |
+
"allenai/OLMo-1B",
|
255 |
+
"google/gemma-7b",
|
256 |
+
"mistralai/Mistral-7B-v0.1",
|
257 |
+
"Qwen/Qwen1.5-7B",
|
258 |
+
"01-ai/Yi-6B",
|
259 |
+
"meta-llama/Llama-2-7b-hf",
|
260 |
+
"codellama/CodeLlama-7b-hf",
|
261 |
+
"EleutherAI/llemma_7b",
|
262 |
+
"allenai/OLMo-7B",
|
263 |
+
"Qwen/Qwen1.5-14B",
|
264 |
+
"meta-llama/Llama-2-13b-hf",
|
265 |
+
"codellama/CodeLlama-13b-hf",
|
266 |
+
"upstage/SOLAR-10.7B-v1.0",
|
267 |
+
"01-ai/Yi-34B",
|
268 |
+
"EleutherAI/llemma_34b",
|
269 |
+
"codellama/CodeLlama-34b-hf",
|
270 |
+
"mistralai/Mixtral-8x7B-v0.1",
|
271 |
+
"meta-llama/Llama-2-70b-hf",
|
272 |
+
"codellama/CodeLlama-70b-hf",
|
273 |
+
"Qwen/Qwen1.5-72B",
|
274 |
+
"Qwen/Qwen1.5-0.5B-Chat",
|
275 |
+
"Qwen/Qwen1.5-1.8B-Chat",
|
276 |
+
"Qwen/Qwen1.5-4B-Chat",
|
277 |
+
"google/gemma-2b-it",
|
278 |
+
"google/gemma-7b-it",
|
279 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
280 |
+
"Qwen/Qwen1.5-7B-Chat",
|
281 |
+
"01-ai/Yi-6B-Chat",
|
282 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
283 |
+
"codellama/CodeLlama-7b-Instruct-hf",
|
284 |
+
"allenai/OLMo-7B-SFT",
|
285 |
+
"allenai/OLMo-7B-Instruct",
|
286 |
+
"allenai/tulu-2-7b",
|
287 |
+
"allenai/tulu-2-dpo-7b",
|
288 |
+
"allenai/codetulu-2-7b",
|
289 |
+
"microsoft/Orca-2-7b",
|
290 |
+
"openchat/openchat-3.5-0106",
|
291 |
+
"teknium/OpenHermes-2-Mistral-7B",
|
292 |
+
"teknium/OpenHermes-2.5-Mistral-7B",
|
293 |
+
"NousResearch/Nous-Hermes-2-Mistral-7B-DPO",
|
294 |
+
"HuggingFaceH4/zephyr-7b-beta",
|
295 |
+
"Qwen/Qwen1.5-14B-Chat",
|
296 |
+
"meta-llama/Llama-2-13b-chat-hf",
|
297 |
+
"codellama/CodeLlama-13b-Instruct-hf",
|
298 |
+
"allenai/tulu-2-13b",
|
299 |
+
"allenai/tulu-2-dpo-13b",
|
300 |
+
"allenai/codetulu-2-13b",
|
301 |
+
"microsoft/Orca-2-13b",
|
302 |
+
"01-ai/Yi-34B-Chat",
|
303 |
+
"codellama/CodeLlama-34b-Instruct-hf",
|
304 |
+
"allenai/codetulu-2-34b",
|
305 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
306 |
+
"NousResearch/Nous-Hermes-2-Mistral-8x7B-SFT",
|
307 |
+
"NousResearch/Nous-Hermes-2-Mistral-8x7B-DPO",
|
308 |
+
"NousResearch/Nous-Hermes-2-Yi-34B",
|
309 |
+
"meta-llama/Llama-2-70b-chat-hf",
|
310 |
+
"codellama/CodeLlama-70b-Instruct-hf",
|
311 |
+
"Qwen/Qwen1.5-72B-Chat",
|
312 |
+
"allenai/tulu-2-dpo-72b",
|
313 |
+
]
|
314 |
+
|
315 |
+
|
316 |
+
MODEL_MAPPING = {
|
317 |
+
"microsoft/phi-1": [1.3, "Base"],
|
318 |
+
"microsoft/phi-1_5": [1.3, "Base"],
|
319 |
+
"microsoft/phi-2": [2.7, "Base"],
|
320 |
+
"Qwen/Qwen1.5-0.5B": [0.5, "Base"],
|
321 |
+
"Qwen/Qwen1.5-1.8B": [1.8, "Base"],
|
322 |
+
"Qwen/Qwen1.5-4B": [4.0, "Base"],
|
323 |
+
"google/gemma-2b": [2.0, "Base"],
|
324 |
+
"allenai/OLMo-1B": [1.0, "Base"],
|
325 |
+
"Qwen/Qwen1.5-0.5B-Chat": [0.5, "Chat", "Qwen/Qwen1.5-0.5B"],
|
326 |
+
"Qwen/Qwen1.5-1.8B-Chat": [1.8, "Chat", "Qwen/Qwen1.5-1.8B"],
|
327 |
+
"Qwen/Qwen1.5-4B-Chat": [4.0, "Chat", "Qwen/Qwen1.5-4B"],
|
328 |
+
"microsoft/Phi-3-mini-4k-instruct": [3.8, "Chat"],
|
329 |
+
"microsoft/Phi-3-mini-128k-instruct": [3.8, "Chat"],
|
330 |
+
"google/gemma-2b-it": [2.0, "Chat", "google/gemma-2b"],
|
331 |
+
"google/gemma-1.1-2b-it": [2.0, "Chat"],
|
332 |
+
"google/gemma-7b": [7.0, "Base"],
|
333 |
+
"mistralai/Mistral-7B-v0.1": [7.0, "Base"],
|
334 |
+
"mistral-community/Mistral-7B-v0.2": [7.0, "Base"],
|
335 |
+
"Qwen/Qwen1.5-7B": [7.0, "Base"],
|
336 |
+
"01-ai/Yi-6B": [6.0, "Base"],
|
337 |
+
"meta-llama/Llama-2-7b-hf": [7.0, "Base"],
|
338 |
+
"codellama/CodeLlama-7b-hf": [7.0, "Base"],
|
339 |
+
"meta-llama/Meta-Llama-3-8B": [8.0, "Base"],
|
340 |
+
"EleutherAI/llemma_7b": [7.0, "Base"],
|
341 |
+
"allenai/OLMo-7B": [7.0, "Base"],
|
342 |
+
"google/gemma-7b-it": [7.0, "Chat", "google/gemma-7b"],
|
343 |
+
"google/gemma-1.1-7b-it": [7.0, "Chat"],
|
344 |
+
"mistralai/Mistral-7B-Instruct-v0.2": [7.0, "Chat", "mistral-community/Mistral-7B-v0.2"],
|
345 |
+
"Qwen/Qwen1.5-7B-Chat": [7.0, "Chat", "Qwen/Qwen1.5-7B"],
|
346 |
+
"01-ai/Yi-6B-Chat": [6.0, "Chat", "01-ai/Yi-6B"],
|
347 |
+
"meta-llama/Llama-2-7b-chat-hf": [7.0, "Chat", "meta-llama/Llama-2-7b-hf"],
|
348 |
+
"codellama/CodeLlama-7b-Instruct-hf": [7.0, "Chat", "codellama/CodeLlama-7b-hf"],
|
349 |
+
"meta-llama/Meta-Llama-3-8B-Instruct": [8.0, "Chat", "meta-llama/Meta-Llama-3-8B"],
|
350 |
+
"allenai/OLMo-7B-SFT": [7.0, "Chat", "allenai/OLMo-7B"],
|
351 |
+
"allenai/OLMo-7B-Instruct": [7.0, "Chat", "allenai/OLMo-7B"],
|
352 |
+
"allenai/tulu-2-7b": [7.0, "Chat", "meta-llama/Llama-2-7b-hf"],
|
353 |
+
"allenai/tulu-2-dpo-7b": [7.0, "Chat", "meta-llama/Llama-2-7b-hf"],
|
354 |
+
"allenai/codetulu-2-7b": [7.0, "Chat", "codellama/CodeLlama-7b-hf"],
|
355 |
+
"microsoft/Orca-2-7b": [7.0, "Chat", "meta-llama/Llama-2-7b-hf"],
|
356 |
+
"openchat/openchat-3.5-0106": [7.0, "Chat", "mistralai/Mistral-7B-v0.1"],
|
357 |
+
"teknium/OpenHermes-2-Mistral-7B": [7.0, "Chat", "mistralai/Mistral-7B-v0.1"],
|
358 |
+
"teknium/OpenHermes-2.5-Mistral-7B": [7.0, "Chat", "mistralai/Mistral-7B-v0.1"],
|
359 |
+
"NousResearch/Nous-Hermes-2-Mistral-7B-DPO": [7.0, "Chat", "mistralai/Mistral-7B-v0.1"],
|
360 |
+
"Starling-LM-7B-alpha": [7.0, "Chat"],
|
361 |
+
"Starling-LM-7B-beta": [7.0, "Chat"],
|
362 |
+
"kaist-ai/mistral-orpo-alpha": [7.0, "Chat", "mistralai/Mistral-7B-v0.1"],
|
363 |
+
"kaist-ai/mistral-orpo-beta": [7.0, "Chat", "mistralai/Mistral-7B-v0.1"],
|
364 |
+
"HuggingFaceH4/zephyr-7b-beta": [7.0, "Chat", "mistralai/Mistral-7B-v0.1"],
|
365 |
+
"Qwen/Qwen1.5-14B": [14.0, "Base"],
|
366 |
+
"meta-llama/Llama-2-13b-hf": [13.0, "Base"],
|
367 |
+
"codellama/CodeLlama-13b-hf": [13.0, "Base"],
|
368 |
+
"upstage/SOLAR-10.7B-v1.0": [10.7, "Base"],
|
369 |
+
"Qwen/Qwen1.5-14B-Chat": [14.0, "Chat", "Qwen/Qwen1.5-14B"],
|
370 |
+
"upstage/SOLAR-10.7B-Instruct-v1.0": [10.7, "Chat", "upstage/SOLAR-10.7B-v1.0"],
|
371 |
+
"CohereForAI/aya-101": [13.0, "Chat"],
|
372 |
+
"meta-llama/Llama-2-13b-chat-hf": [13.0, "Chat", "meta-llama/Llama-2-13b-hf"],
|
373 |
+
"codellama/CodeLlama-13b-Instruct-hf": [13.0, "Chat", "codellama/CodeLlama-13b-hf"],
|
374 |
+
"allenai/tulu-2-13b": [13.0, "Chat", "meta-llama/Llama-2-13b-hf"],
|
375 |
+
"allenai/tulu-2-dpo-13b": [13.0, "Chat", "meta-llama/Llama-2-13b-hf"],
|
376 |
+
"allenai/codetulu-2-13b": [13.0, "Chat", "codellama/CodeLlama-13b-hf"],
|
377 |
+
"microsoft/Orca-2-13b": [13.0, "Chat", "meta-llama/Llama-2-13b-hf"],
|
378 |
+
"01-ai/Yi-34B": [34.0, "Base"],
|
379 |
+
"EleutherAI/llemma_34b": [34.0, "Base"],
|
380 |
+
"Qwen/Qwen1.5-32B": [32.0, "Base"],
|
381 |
+
"codellama/CodeLlama-34b-hf": [34.0, "Base"],
|
382 |
+
"mistralai/Mixtral-8x7B-v0.1": [46.7, "Base"],
|
383 |
+
"01-ai/Yi-34B-Chat": [34.0, "Chat", "01-ai/Yi-34B"],
|
384 |
+
"NousResearch/Nous-Hermes-2-Yi-34B": [34.0, "Chat", "01-ai/Yi-34B"],
|
385 |
+
"codellama/CodeLlama-34b-Instruct-hf": [34.0, "Chat", "codellama/CodeLlama-34b-hf"],
|
386 |
+
"allenai/codetulu-2-34b": [34.0, "Chat", "codellama/CodeLlama-34b-hf"],
|
387 |
+
"Qwen/Qwen1.5-32B-Chat": [32.0, "Chat", "Qwen/Qwen1.5-32B"],
|
388 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1": [46.7, "Chat", "mistralai/Mixtral-8x7B-v0.1"],
|
389 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-SFT": [46.7, "Chat", "mistralai/Mixtral-8x7B-v0.1"],
|
390 |
+
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO": [46.7, "Chat", "mistralai/Mixtral-8x7B-v0.1"],
|
391 |
+
"CohereForAI/c4ai-command-r-v01": [35.0, "Chat"],
|
392 |
+
"meta-llama/Llama-2-70b-hf": [70.0, "Base"],
|
393 |
+
"codellama/CodeLlama-70b-hf": [70.0, "Base"],
|
394 |
+
"mistral-community/Mixtral-8x22B-v0.1-AWQ": ["AWQ", "Base"],
|
395 |
+
"meta-llama/Meta-Llama-3-70B": [70.0, "Base"],
|
396 |
+
"Qwen/Qwen1.5-72B": [72.0, "Base"],
|
397 |
+
"meta-llama/Llama-2-70b-chat-hf": [70.0, "Chat", "meta-llama/Llama-2-70b-hf"],
|
398 |
+
"codellama/CodeLlama-70b-Instruct-hf": [70.0, "Chat", "codellama/CodeLlama-70b-hf"],
|
399 |
+
"allenai/tulu-2-dpo-70b": [70.0, "Chat", "meta-llama/Llama-2-70b-hf"],
|
400 |
+
"alpindale/c4ai-command-r-plus-GPTQ": ["GPTQ", "Chat"],
|
401 |
+
"meta-llama/Meta-Llama-3-70B-Instruct": [70.0, "Chat", "meta-llama/Meta-Llama-3-70B"],
|
402 |
+
"MaziyarPanahi/Mixtral-8x22B-Instruct-v0.1-AWQ": ["AWQ", "Chat", "mistral-community/Mixtral-8x22B-v0.1-AWQ"],
|
403 |
+
"MaziyarPanahi/zephyr-orpo-141b-A35b-v0.1-AWQ": ["AWQ", "Chat", "mistral-community/Mixtral-8x22B-v0.1-AWQ"],
|
404 |
+
"Qwen/Qwen1.5-72B-Chat": [72.0, "Chat", "Qwen/Qwen1.5-72B"],
|
405 |
+
"qwen/qwen-110b-chat": [110.0, "Chat", None],
|
406 |
+
"gpt-3.5-turbo-1106": ["Proprietary", "Proprietary"],
|
407 |
+
"gpt-3.5-turbo-0125": ["Proprietary", "Proprietary"],
|
408 |
+
"gpt-4-1106-preview": ["Proprietary", "Proprietary"],
|
409 |
+
"gpt-4-0125-preview": ["Proprietary", "Proprietary"],
|
410 |
+
"gpt-4-turbo-2024-04-09": ["Proprietary", "Proprietary"],
|
411 |
+
"gpt-4o-2024-05-13": ["Proprietary", "Proprietary"],
|
412 |
+
"mistral-medium": ["Proprietary", "Proprietary"],
|
413 |
+
"mistral-large": ["Proprietary", "Proprietary"],
|
414 |
+
"gemini-1.0-pro": ["Proprietary", "Proprietary"],
|
415 |
+
"gemini-pro-1.5": ["Proprietary", "Proprietary"],
|
416 |
+
"google/gemini-flash-1.5": ["Proprietary", "Proprietary"],
|
417 |
+
"claude-3-haiku-20240307": ["Proprietary", "Proprietary"],
|
418 |
+
"claude-3-sonnet-20240229": ["Proprietary", "Proprietary"],
|
419 |
+
"claude-3-opus-20240229": ["Proprietary", "Proprietary"],
|
420 |
+
}
|
421 |
+
|
422 |
+
|
423 |
+
MODEL_SHORT_TO_LONG = {model.split("/")[-1]: model for model in ORDERED_MODELS}
|
424 |
+
|
425 |
+
|
426 |
+
def get_model_type(model_name: str) -> str:
|
427 |
+
for _, model_list in MODELS["pretrained"].items():
|
428 |
+
if model_name in model_list:
|
429 |
+
return "base"
|
430 |
+
|
431 |
+
for _, model_list in MODELS["instruction_tuned"].items():
|
432 |
+
if model_name in model_list:
|
433 |
+
return "instruct"
|
434 |
+
|
435 |
+
if model_name in API_MODELS:
|
436 |
+
return "api"
|
437 |
+
|
438 |
+
raise ValueError(f"Model {model_name} not found in model_list.py")
|
439 |
+
return None
|
440 |
+
|
441 |
+
|
442 |
+
def get_open_model_list() -> list:
|
443 |
+
all_models = []
|
444 |
+
for _, model_list in MODELS["pretrained"].items():
|
445 |
+
all_models.extend(model_list)
|
446 |
+
|
447 |
+
for _, model_list in MODELS["instruction_tuned"].items():
|
448 |
+
all_models.extend(model_list)
|
449 |
+
|
450 |
+
return all_models
|
451 |
+
|
452 |
+
|
453 |
+
def get_all_model_list() -> list:
|
454 |
+
all_models = []
|
455 |
+
for _, model_list in MODELS["pretrained"].items():
|
456 |
+
all_models.extend(model_list)
|
457 |
+
|
458 |
+
for _, model_list in MODELS["instruction_tuned"].items():
|
459 |
+
all_models.extend(model_list)
|
460 |
+
|
461 |
+
all_models.extend(API_MODELS)
|
462 |
+
|
463 |
+
return all_models
|
464 |
+
|
465 |
+
|
466 |
+
def get_pretrained_models() -> list:
|
467 |
+
all_models = []
|
468 |
+
for _, model_list in MODELS["pretrained"].items():
|
469 |
+
all_models.extend(model_list)
|
470 |
+
return all_models
|
471 |
+
|
472 |
+
|
473 |
+
def get_instruct_models() -> list:
|
474 |
+
all_models = []
|
475 |
+
for _, model_list in MODELS["instruction_tuned"].items():
|
476 |
+
all_models.extend(model_list)
|
477 |
+
return all_models
|
478 |
+
|
479 |
+
|
480 |
+
def get_model_params(model_name: str) -> int:
|
481 |
+
for size_range, model_list in MODELS["pretrained"].items():
|
482 |
+
if model_name in model_list:
|
483 |
+
return int(size_range.split("B")[0].replace("<=", ""))
|
484 |
+
|
485 |
+
for size_range, model_list in MODELS["instruction_tuned"].items():
|
486 |
+
if model_name in model_list:
|
487 |
+
return int(size_range.split("B")[0].replace("<=", ""))
|
488 |
+
|
489 |
+
raise ValueError(f"Model {model_name} not found in model_list.py")
|
490 |
+
|
491 |
+
|
492 |
+
def get_model_num_gpus(model_name: str) -> int:
|
493 |
+
model_params = get_model_params(model_name)
|
494 |
+
num_gpus = {
|
495 |
+
4: 1,
|
496 |
+
7: 1,
|
497 |
+
14: 2,
|
498 |
+
50: 4,
|
499 |
+
75: 8,
|
500 |
+
175: 4,
|
501 |
+
}[model_params]
|
502 |
+
return num_gpus
|
503 |
+
|
504 |
+
|
505 |
+
def get_not_trained_models() -> list:
|
506 |
+
all_models = get_all_model_list()
|
507 |
+
trained_models = bgb_trained_models
|
508 |
+
not_trained_models = [model for model in all_models if model not in trained_models]
|
509 |
+
return not_trained_models
|
510 |
+
|
511 |
+
|
512 |
+
def is_trained_model(model_name: str) -> bool:
|
513 |
+
return model_name in bgb_trained_models
|
514 |
+
|
515 |
+
|
516 |
+
if __name__ == "__main__":
|
517 |
+
assert get_model_type("microsoft/phi-1"), "base"
|
518 |
+
assert get_model_params("microsoft/phi-2"), 4
|
519 |
+
|
520 |
+
models = get_all_model_list()
|
521 |
+
|
522 |
+
model_list_str = ""
|
523 |
+
for model in models:
|
524 |
+
model_list_str += f'"{model}"\n'
|
525 |
+
print(model_list_str)
|
526 |
+
|
527 |
+
print(f"{len(models)} models found in src/model_list.py")
|
528 |
+
|
529 |
+
print(get_not_trained_models())
|
src/panel.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from src.leaderboard import BGB_COLUMN_MAPPING, get_bgb_leaderboard_df, get_leaderboard_df
|
4 |
+
from src.llm_perf import get_eval_df, get_llm_perf_df
|
5 |
+
|
6 |
+
|
7 |
+
def select_columns_fn(machine, columns, search, llm_perf_df=None):
|
8 |
+
if llm_perf_df is None:
|
9 |
+
llm_perf_df = get_llm_perf_df(machine=machine)
|
10 |
+
|
11 |
+
selected_leaderboard_df = get_leaderboard_df(llm_perf_df)
|
12 |
+
selected_leaderboard_df = selected_leaderboard_df[
|
13 |
+
selected_leaderboard_df["Model π€"].str.contains(search, case=False)
|
14 |
+
]
|
15 |
+
selected_leaderboard_df = selected_leaderboard_df[columns]
|
16 |
+
|
17 |
+
return selected_leaderboard_df
|
18 |
+
|
19 |
+
|
20 |
+
def select_columns_bgb_fn(machine, columns, search, type_checkboxes, param_slider, eval_df=None):
|
21 |
+
if eval_df is None:
|
22 |
+
eval_df = get_eval_df(machine)
|
23 |
+
|
24 |
+
selected_leaderboard_df = get_bgb_leaderboard_df(eval_df)
|
25 |
+
selected_leaderboard_df = selected_leaderboard_df[
|
26 |
+
selected_leaderboard_df["Model π€"].str.contains(search, case=False)
|
27 |
+
]
|
28 |
+
|
29 |
+
print(param_slider)
|
30 |
+
|
31 |
+
import pdb
|
32 |
+
|
33 |
+
pdb.set_trace()
|
34 |
+
|
35 |
+
columns = ["Model π€"] + columns + type_checkboxes
|
36 |
+
|
37 |
+
return selected_leaderboard_df[columns]
|
38 |
+
|
39 |
+
|
40 |
+
def create_select_callback(
|
41 |
+
# fixed
|
42 |
+
machine_textbox,
|
43 |
+
# interactive
|
44 |
+
columns_checkboxes,
|
45 |
+
search_bar,
|
46 |
+
type_checkboxes,
|
47 |
+
param_slider,
|
48 |
+
# outputs
|
49 |
+
leaderboard_table,
|
50 |
+
):
|
51 |
+
columns_checkboxes.change(
|
52 |
+
fn=select_columns_bgb_fn,
|
53 |
+
inputs=[machine_textbox, columns_checkboxes, search_bar, type_checkboxes, param_slider],
|
54 |
+
outputs=[leaderboard_table],
|
55 |
+
)
|
56 |
+
search_bar.change(
|
57 |
+
fn=select_columns_bgb_fn,
|
58 |
+
inputs=[machine_textbox, columns_checkboxes, search_bar, type_checkboxes, param_slider],
|
59 |
+
outputs=[leaderboard_table],
|
60 |
+
)
|
src/utils.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig
|
2 |
+
|
3 |
+
LLM_MODEL_ARCHS = {
|
4 |
+
"stablelm_epoch": "π΄ StableLM-Epoch",
|
5 |
+
"stablelm_alpha": "π΄ StableLM-Alpha",
|
6 |
+
"mixformer-sequential": "π§βπ» Phi Ο",
|
7 |
+
"RefinedWebModel": "π¦
Falcon",
|
8 |
+
"gpt_bigcode": "β StarCoder",
|
9 |
+
"RefinedWeb": "π¦
Falcon",
|
10 |
+
"baichuan": "π Baichuan ηΎε·", # river
|
11 |
+
"internlm": "π§βπ InternLM δΉ¦η", # scholar
|
12 |
+
"mistral": "βοΈ Mistral",
|
13 |
+
"mixtral": "βοΈ Mixtral",
|
14 |
+
"codegen": "βΎοΈ CodeGen",
|
15 |
+
"chatglm": "π¬ ChatGLM",
|
16 |
+
"falcon": "π¦
Falcon",
|
17 |
+
"bloom": "πΈ Bloom",
|
18 |
+
"llama": "π¦ LLaMA",
|
19 |
+
"rwkv": "π¦ββ¬ RWKV",
|
20 |
+
"deci": "π΅ deci",
|
21 |
+
"Yi": "π« Yi δΊΊ", # people
|
22 |
+
"mpt": "𧱠MPT",
|
23 |
+
# suggest something
|
24 |
+
"gpt_neox": "GPT-NeoX",
|
25 |
+
"gpt_neo": "GPT-Neo",
|
26 |
+
"gpt2": "GPT-2",
|
27 |
+
"gptj": "GPT-J",
|
28 |
+
"bart": "BART",
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
def model_hyperlink(link, model_name):
|
33 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
34 |
+
|
35 |
+
|
36 |
+
def process_architectures(model):
|
37 |
+
# return "Unknown"
|
38 |
+
try:
|
39 |
+
config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
40 |
+
return LLM_MODEL_ARCHS.get(config.model_type, "Unknown")
|
41 |
+
except Exception:
|
42 |
+
return "Unknown"
|
43 |
+
|
44 |
+
|
45 |
+
def process_score(score, quantization):
|
46 |
+
if quantization != "Unquantized":
|
47 |
+
return f"{score:.2f}*"
|
48 |
+
else:
|
49 |
+
return f"{score:.2f} "
|
50 |
+
|
51 |
+
|
52 |
+
def process_quantizations(x):
|
53 |
+
if (
|
54 |
+
x["config.backend.quantization_scheme"] == "bnb"
|
55 |
+
and x["config.backend.quantization_config.load_in_4bit"] is True
|
56 |
+
):
|
57 |
+
return "BnB.4bit"
|
58 |
+
elif (
|
59 |
+
x["config.backend.quantization_scheme"] == "bnb"
|
60 |
+
and x["config.backend.quantization_config.load_in_8bit"] is True
|
61 |
+
):
|
62 |
+
return "BnB.8bit"
|
63 |
+
elif x["config.backend.quantization_scheme"] == "gptq" and x["config.backend.quantization_config.bits"] == 4:
|
64 |
+
return "GPTQ.4bit"
|
65 |
+
elif x["config.backend.quantization_scheme"] == "awq" and x["config.backend.quantization_config.bits"] == 4:
|
66 |
+
return "AWQ.4bit"
|
67 |
+
else:
|
68 |
+
return "Unquantized"
|
69 |
+
|
70 |
+
|
71 |
+
def process_kernels(x):
|
72 |
+
if x["config.backend.quantization_scheme"] == "gptq" and x["config.backend.quantization_config.version"] == 1:
|
73 |
+
return "GPTQ.ExllamaV1"
|
74 |
+
|
75 |
+
elif x["config.backend.quantization_scheme"] == "gptq" and x["config.backend.quantization_config.version"] == 2:
|
76 |
+
return "GPTQ.ExllamaV2"
|
77 |
+
elif (
|
78 |
+
x["config.backend.quantization_scheme"] == "awq" and x["config.backend.quantization_config.version"] == "gemm"
|
79 |
+
):
|
80 |
+
return "AWQ.GEMM"
|
81 |
+
elif (
|
82 |
+
x["config.backend.quantization_scheme"] == "awq" and x["config.backend.quantization_config.version"] == "gemv"
|
83 |
+
):
|
84 |
+
return "AWQ.GEMV"
|
85 |
+
else:
|
86 |
+
return "No Kernel"
|
87 |
+
|
88 |
+
|
89 |
+
def test():
|
90 |
+
model = "Qwen/Qwen1.5-32B"
|
91 |
+
config = AutoConfig.from_pretrained(model, trust_remote_code=True)
|
92 |
+
|
93 |
+
import pdb
|
94 |
+
|
95 |
+
pdb.set_trace()
|
96 |
+
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
test()
|