Spaces:
Sleeping
Sleeping
import tempfile | |
from typing import Optional | |
from TTS.config import load_config | |
import gradio as gr | |
import numpy as np | |
from TTS.utils.manage import ModelManager | |
from TTS.utils.synthesizer import Synthesizer | |
MODELS = {} | |
SPEAKERS = {} | |
MAX_TXT_LEN = 100 | |
manager = ModelManager() | |
MODEL_NAMES = manager.list_tts_models() | |
# filter out multi-speaker models and slow wavegrad vocoders | |
filters = ["vctk", "your_tts", "ek1"] | |
MODEL_NAMES = [model_name for model_name in MODEL_NAMES if not any(f in model_name for f in filters)] | |
EN = [el for el in MODEL_NAMES if "/en/" in el] | |
OTHER = [el for el in MODEL_NAMES if "/en/" not in el] | |
EN[0], EN[5] = EN[5], EN[0] | |
MODEL_NAMES = EN + OTHER | |
# reorder models | |
print(MODEL_NAMES) | |
def tts(text: str, model_name: str): | |
if len(text) > MAX_TXT_LEN: | |
text = text[:MAX_TXT_LEN] | |
print(f"Input text was cutoff since it went over the {MAX_TXT_LEN} character limit.") | |
print(text, model_name) | |
# download model | |
model_path, config_path, model_item = manager.download_model(model_name) | |
vocoder_name: Optional[str] = model_item["default_vocoder"] | |
# download vocoder | |
vocoder_path = None | |
vocoder_config_path = None | |
if vocoder_name is not None: | |
vocoder_path, vocoder_config_path, _ = manager.download_model(vocoder_name) | |
# init synthesizer | |
synthesizer = Synthesizer( | |
model_path, config_path, None, None, vocoder_path, vocoder_config_path, | |
) | |
# synthesize | |
if synthesizer is None: | |
raise NameError("model not found") | |
wavs = synthesizer.tts(text, None) | |
# return output | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: | |
synthesizer.save_wav(wavs, fp) | |
return fp.name | |
title = """<h1 align="center">馃惛馃挰 CoquiTTS Demo Proxecto N贸s </h1>""" | |
with gr.Blocks(analytics_enabled=False) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
""" | |
## <img src="https://huggingface.co/spaces/proxectonos/README/resolve/main/title-card.png" width="100%" style="border-radius: 0.75rem;"> | |
""" | |
) | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
<br/> | |
馃捇 Este space mostra alg煤ns dos modelos TTS desenvolvidos polo **[Proxecto N贸s](https://huggingface.co/proxectonos)**. | |
<br/> | |
""" | |
) | |
with gr.Row(): | |
input_text = gr.Textbox( | |
label="Input Text", | |
value="This sentence has been generated by a speech synthesis system.", | |
) | |
with gr.Row(): | |
model_select = gr.Dropdown( | |
label="Pick Model: tts_models/<language>/<dataset>/<model_name>", | |
choices=MODEL_NAMES, | |
value="tts_models/en/jenny/jenny" | |
) | |
with gr.Row(): | |
tts_button = gr.Button("Send", elem_id="send-btn", visible=True) | |
with gr.Row(): | |
output_audio = gr.Audio(label="Output", type="filepath") | |
tts_button.click( | |
tts, | |
inputs=[ | |
input_text, | |
model_select, | |
], | |
outputs=[output_audio], | |
concurrency_limit=16, | |
) | |
demo.launch(debug=True) |