import tempfile from typing import Optional from TTS.config import load_config import gradio as gr import numpy as np from TTS.utils.manage import ModelManager from TTS.utils.synthesizer import Synthesizer MODELS = {} SPEAKERS = {} MAX_TXT_LEN = 100 manager = ModelManager() MODEL_NAMES = manager.list_tts_models() # filter out multi-speaker models and slow wavegrad vocoders filters = ["vctk", "your_tts", "ek1"] MODEL_NAMES = [model_name for model_name in MODEL_NAMES if not any(f in model_name for f in filters)] EN = [el for el in MODEL_NAMES if "/en/" in el] OTHER = [el for el in MODEL_NAMES if "/en/" not in el] EN[0], EN[5] = EN[5], EN[0] MODEL_NAMES = EN + OTHER # reorder models print(MODEL_NAMES) def tts(text: str, model_name: str): if len(text) > MAX_TXT_LEN: text = text[:MAX_TXT_LEN] print(f"Input text was cutoff since it went over the {MAX_TXT_LEN} character limit.") print(text, model_name) # download model model_path, config_path, model_item = manager.download_model(model_name) vocoder_name: Optional[str] = model_item["default_vocoder"] # download vocoder vocoder_path = None vocoder_config_path = None if vocoder_name is not None: vocoder_path, vocoder_config_path, _ = manager.download_model(vocoder_name) # init synthesizer synthesizer = Synthesizer( model_path, config_path, None, None, vocoder_path, vocoder_config_path, ) # synthesize if synthesizer is None: raise NameError("model not found") wavs = synthesizer.tts(text, None) # return output with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: synthesizer.save_wav(wavs, fp) return fp.name title = """

🐸💬 CoquiTTS Playground

""" with gr.Blocks(analytics_enabled=False) as demo: with gr.Row(): with gr.Column(): gr.Markdown( """ ## """ ) gr.Markdown( """
💻 Este space mostra algúns dos modelos TTS desenvolvidos polo **[Proxecto Nós](https://huggingface.co/proxectonos)**.
""" ) with gr.Row(): with gr.Column(): input_text = gr.inputs.Textbox( label="Input Text", default="This sentence has been generated by a speech synthesis system.", ) model_select = gr.inputs.Dropdown( label="Pick Model: tts_models///", choices=MODEL_NAMES, default="tts_models/en/jenny/jenny" ) tts_button = gr.Button("Send", elem_id="send-btn", visible=True) with gr.Column(): output_audio = gr.outputs.Audio(label="Output", type="filepath") tts_button.click( tts, inputs=[ input_text, model_select, ], outputs=[output_audio], ) demo.queue(concurrency_count=16).launch(debug=True)