Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,053 Bytes
f0719e0 c732904 f0719e0 c7adb54 f0719e0 c732904 c7adb54 3f0925c f0719e0 c732904 c7adb54 c732904 4e4c4c8 c732904 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
---
title: Marigold-LCM Depth Estimation
emoji: 🏵️
colorFrom: blue
colorTo: red
sdk: gradio
sdk_version: 4.32.2
app_file: app.py
pinned: true
license: cc-by-sa-4.0
models:
- prs-eth/marigold-depth-lcm-v1-0
hf_oauth: true
hf_oauth_expiration_minutes: 43200
---
This is a demo of Marigold-LCM, the state-of-the-art depth estimator for images in the wild.
It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as one step.
Find out more in our CVPR 2024 Oral paper titled ["Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation"](https://arxiv.org/abs/2312.02145)
```
@InProceedings{ke2023repurposing,
title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation},
author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2024}
}
```
|