File size: 21,565 Bytes
536e673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b54db
2c83504
 
536e673
2c83504
e6b54db
 
 
2c83504
e6b54db
536e673
2c83504
e6b54db
536e673
e6b54db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa12f51
e6b54db
 
 
 
 
 
 
 
2c83504
 
e6b54db
 
 
 
 
 
 
 
 
 
 
 
2c83504
 
e6b54db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536e673
 
 
e6b54db
 
 
 
536e673
 
 
 
 
 
 
 
e6b54db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536e673
e6b54db
 
 
 
 
 
536e673
 
 
 
 
e6b54db
 
 
 
 
 
 
 
 
536e673
e6b54db
 
 
 
536e673
 
 
 
 
 
 
 
 
 
e6b54db
 
 
 
 
536e673
e6b54db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536e673
 
 
 
 
 
 
 
 
 
 
 
e6b54db
 
 
 
536e673
 
e6b54db
 
 
 
 
 
 
 
 
 
 
 
 
 
536e673
 
 
 
 
 
 
 
 
e6b54db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc6a2b
e6b54db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536e673
 
 
 
 
 
 
 
 
 
 
e6b54db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
536e673
 
 
 
 
 
 
e6b54db
 
 
 
 
 
536e673
 
e6b54db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62560ae
 
 
 
 
 
e6b54db
 
 
536e673
e6b54db
536e673
 
e6b54db
 
 
 
 
 
536e673
e6b54db
 
 
 
 
 
2c83504
 
 
e6b54db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------


import functools
import os

import spaces
import gradio as gr
import numpy as np
import torch as torch
from PIL import Image

from gradio_imageslider import ImageSlider
from huggingface_hub import login

from extrude import extrude_depth_3d
from marigold_depth_estimation import MarigoldPipeline


def process(
    pipe,
    path_input,
    ensemble_size,
    denoise_steps,
    processing_res,
    path_out_16bit=None,
    path_out_fp32=None,
    path_out_vis=None,
    _input_3d_plane_near=None,
    _input_3d_plane_far=None,
    _input_3d_embossing=None,
    _input_3d_filter_size=None,
    _input_3d_frame_near=None,
):
    if path_out_vis is not None:
        return (
            [path_out_16bit, path_out_vis],
            [path_out_16bit, path_out_fp32, path_out_vis],
        )

    input_image = Image.open(path_input)

    pipe_out = pipe(
        input_image,
        ensemble_size=ensemble_size,
        denoising_steps=denoise_steps,
        processing_res=processing_res,
        batch_size=1 if processing_res == 0 else 0,
        show_progress_bar=True,
    )

    depth_pred = pipe_out.depth_np
    depth_colored = pipe_out.depth_colored
    depth_16bit = (depth_pred * 65535.0).astype(np.uint16)

    path_output_dir = os.path.splitext(path_input)[0] + "_output"
    os.makedirs(path_output_dir, exist_ok=True)

    name_base = os.path.splitext(os.path.basename(path_input))[0]
    path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy")
    path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png")
    path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png")

    np.save(path_out_fp32, depth_pred)
    Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16")
    depth_colored.save(path_out_vis)

    return (
        [path_out_16bit, path_out_vis],
        [path_out_16bit, path_out_fp32, path_out_vis],
    )


def process_3d(
    input_image,
    files,
    size_longest_px,
    size_longest_cm,
    filter_size,
    plane_near,
    plane_far,
    embossing,
    frame_thickness,
    frame_near,
    frame_far,
):
    if input_image is None or len(files) < 1:
        raise gr.Error(
            "Please upload an image (or use examples) and compute depth first"
        )

    if plane_near >= plane_far:
        raise gr.Error("NEAR plane must have a value smaller than the FAR plane")

    def _process_3d(
        size_longest_px,
        filter_size,
        vertex_colors,
        scene_lights,
        output_model_scale=None,
        prepare_for_3d_printing=False,
    ):
        image_rgb = input_image
        image_depth = files[0]

        image_rgb_basename, image_rgb_ext = os.path.splitext(image_rgb)
        image_depth_basename, image_depth_ext = os.path.splitext(image_depth)

        image_rgb_content = Image.open(image_rgb)
        image_rgb_w, image_rgb_h = image_rgb_content.width, image_rgb_content.height
        image_rgb_d = max(image_rgb_w, image_rgb_h)
        image_new_w = size_longest_px * image_rgb_w // image_rgb_d
        image_new_h = size_longest_px * image_rgb_h // image_rgb_d

        image_rgb_new = image_rgb_basename + f"_{size_longest_px}" + image_rgb_ext
        image_depth_new = image_depth_basename + f"_{size_longest_px}" + image_depth_ext
        image_rgb_content.resize((image_new_w, image_new_h), Image.LANCZOS).save(
            image_rgb_new
        )
        Image.open(image_depth).resize((image_new_w, image_new_h), Image.BILINEAR).save(
            image_depth_new
        )

        path_glb, path_stl = extrude_depth_3d(
            image_rgb_new,
            image_depth_new,
            output_model_scale=(
                size_longest_cm * 10
                if output_model_scale is None
                else output_model_scale
            ),
            filter_size=filter_size,
            coef_near=plane_near,
            coef_far=plane_far,
            emboss=embossing / 100,
            f_thic=frame_thickness / 100,
            f_near=frame_near / 100,
            f_back=frame_far / 100,
            vertex_colors=vertex_colors,
            scene_lights=scene_lights,
            prepare_for_3d_printing=prepare_for_3d_printing,
        )

        return path_glb, path_stl

    path_viewer_glb, _ = _process_3d(
        256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1
    )
    path_files_glb, path_files_stl = _process_3d(
        size_longest_px,
        filter_size,
        vertex_colors=True,
        scene_lights=False,
        prepare_for_3d_printing=True,
    )

    return path_viewer_glb, [path_files_glb, path_files_stl]


def run_demo_server(pipe):
    process_pipe = spaces.GPU(functools.partial(process, pipe), duration=120)
    os.environ["GRADIO_ALLOW_FLAGGING"] = "never"

    with gr.Blocks(
        analytics_enabled=False,
        title="Marigold Depth Estimation",
        css="""
            #download {
                height: 118px;
            }
            .slider .inner {
                width: 5px;
                background: #FFF;
            }
            .viewport {
                aspect-ratio: 4/3;
            }
            h1 {
                text-align: center;
                display: block;
            }
            h2 {
                text-align: center;
                display: block;
            }
            h3 {
                text-align: center;
                display: block;
            }
        """,
    ) as demo:
        gr.Markdown(
            """
            # Marigold Depth Estimation

            <p align="center">
            <a title="Website" href="https://marigoldmonodepth.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-website.svg">
            </a>
            <a title="arXiv" href="https://arxiv.org/abs/2312.02145" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
            </a>
            <a title="Github" href="https://github.com/prs-eth/marigold" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://img.shields.io/github/stars/prs-eth/marigold?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
            </a>
            <a title="Social" href="https://twitter.com/antonobukhov1" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
                <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
            </a>
            </p>

            Marigold is the state-of-the-art depth estimator for images in the wild. 
            Upload your image into the <b>first</b> pane, or click any of the <b>examples</b> below.
            The result will be computed and appear in the <b>second</b> pane.
            Scroll down to use the computed depth map for creating a 3D printable asset. 

            <a href="https://huggingface.co/spaces/prs-eth/marigold-lcm" style="color: crimson;">
            <h3 style="color: crimson;">Check out Marigold-LCM — a FAST version of this demo!<h3>
            </a>
        """
        )

        with gr.Row():
            with gr.Column():
                input_image = gr.Image(
                    label="Input Image",
                    type="filepath",
                )
                with gr.Accordion("Advanced options", open=False):
                    ensemble_size = gr.Slider(
                        label="Ensemble size",
                        minimum=1,
                        maximum=20,
                        step=1,
                        value=10,
                    )
                    denoise_steps = gr.Slider(
                        label="Number of denoising steps",
                        minimum=1,
                        maximum=20,
                        step=1,
                        value=10,
                    )
                    processing_res = gr.Radio(
                        [
                            ("Native", 0),
                            ("Recommended", 768),
                        ],
                        label="Processing resolution",
                        value=768,
                    )
                input_output_16bit = gr.File(
                    label="Predicted depth (16-bit)",
                    visible=False,
                )
                input_output_fp32 = gr.File(
                    label="Predicted depth (32-bit)",
                    visible=False,
                )
                input_output_vis = gr.File(
                    label="Predicted depth (red-near, blue-far)",
                    visible=False,
                )
                with gr.Row():
                    submit_btn = gr.Button(value="Compute Depth", variant="primary")
                    clear_btn = gr.Button(value="Clear")
            with gr.Column():
                output_slider = ImageSlider(
                    label="Predicted depth (red-near, blue-far)",
                    type="filepath",
                    show_download_button=True,
                    show_share_button=True,
                    interactive=False,
                    elem_classes="slider",
                    position=0.25,
                )
                files = gr.Files(
                    label="Depth outputs",
                    elem_id="download",
                    interactive=False,
                )

        demo_3d_header = gr.Markdown(
            """
            <h3 align="center">3D Printing Depth Maps</h3>
            <p align="justify">
                This part of the demo uses Marigold depth maps estimated in the previous step to create a 
                3D-printable model. The models are watertight, with correct normals, and exported in the STL format.
                We recommended creating the first model with the default parameters and iterating on it until the best 
                result (see Pro Tips below).
            </p>
            """,
            render=False,
        )

        demo_3d = gr.Row(render=False)
        with demo_3d:
            with gr.Column():
                with gr.Accordion("3D printing demo: Main options", open=True):
                    plane_near = gr.Slider(
                        label="Relative position of the near plane (between 0 and 1)",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.001,
                        value=0.0,
                    )
                    plane_far = gr.Slider(
                        label="Relative position of the far plane (between near and 1)",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.001,
                        value=1.0,
                    )
                    embossing = gr.Slider(
                        label="Embossing level",
                        minimum=0,
                        maximum=100,
                        step=1,
                        value=20,
                    )
                with gr.Accordion("3D printing demo: Advanced options", open=False):
                    size_longest_px = gr.Slider(
                        label="Size (px) of the longest side",
                        minimum=256,
                        maximum=1024,
                        step=256,
                        value=512,
                    )
                    size_longest_cm = gr.Slider(
                        label="Size (cm) of the longest side",
                        minimum=1,
                        maximum=100,
                        step=1,
                        value=10,
                    )
                    filter_size = gr.Slider(
                        label="Size (px) of the smoothing filter",
                        minimum=1,
                        maximum=5,
                        step=2,
                        value=3,
                    )
                    frame_thickness = gr.Slider(
                        label="Frame thickness",
                        minimum=0,
                        maximum=100,
                        step=1,
                        value=5,
                    )
                    frame_near = gr.Slider(
                        label="Frame's near plane offset",
                        minimum=-100,
                        maximum=100,
                        step=1,
                        value=1,
                    )
                    frame_far = gr.Slider(
                        label="Frame's far plane offset",
                        minimum=1,
                        maximum=10,
                        step=1,
                        value=1,
                    )
                with gr.Row():
                    submit_3d = gr.Button(value="Create 3D", variant="primary")
                    clear_3d = gr.Button(value="Clear 3D")
                gr.Markdown(
                    """
                    <h5 align="center">Pro Tips</h5>
                    <ol>
                      <li><b>Re-render with new parameters</b>: Click "Clear 3D" and then "Create 3D".</li>
                      <li><b>Adjust 3D scale and cut-off focus</b>: Set the frame's near plane offset to the 
                          minimum and use 3D preview to evaluate depth scaling. Repeat until the scale is correct and 
                          everything important is in the focus. Set the optimal value for frame's near 
                          plane offset as a last step.</li>
                      <li><b>Increase details</b>: Decrease size of the smoothing filter (also increases noise).</li>
                    </ol>
                    """
                )

            with gr.Column():
                viewer_3d = gr.Model3D(
                    camera_position=(75.0, 90.0, 1.25),
                    elem_classes="viewport",
                    label="3D preview (low-res, relief highlight)",
                    interactive=False,
                )
                files_3d = gr.Files(
                    label="3D model outputs (high-res)",
                    elem_id="download",
                    interactive=False,
                )

        blocks_settings_depth = [ensemble_size, denoise_steps, processing_res]
        blocks_settings_3d = [
            plane_near,
            plane_far,
            embossing,
            size_longest_px,
            size_longest_cm,
            filter_size,
            frame_thickness,
            frame_near,
            frame_far,
        ]
        blocks_settings = blocks_settings_depth + blocks_settings_3d
        map_id_to_default = {b._id: b.value for b in blocks_settings}

        inputs = [
            input_image,
            ensemble_size,
            denoise_steps,
            processing_res,
            input_output_16bit,
            input_output_fp32,
            input_output_vis,
            plane_near,
            plane_far,
            embossing,
            filter_size,
            frame_near,
        ]
        outputs = [
            submit_btn,
            input_image,
            output_slider,
            files,
        ]

        def submit_depth_fn(*args):
            out = list(process_pipe(*args))
            out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out
            return out

        submit_btn.click(
            fn=submit_depth_fn,
            inputs=inputs,
            outputs=outputs,
            concurrency_limit=1,
        )

        gr.Examples(
            fn=submit_depth_fn,
            examples=[
                [
                    "files/bee.jpg",
                    10,  # ensemble_size
                    10,  # denoise_steps
                    768,  # processing_res
                    "files/bee_depth_16bit.png",
                    "files/bee_depth_fp32.npy",
                    "files/bee_depth_colored.png",
                    0.0,  # plane_near
                    0.5,  # plane_far
                    20,  # embossing
                    3,  # filter_size
                    0,  # frame_near
                ],
                [
                    "files/cat.jpg",
                    10,  # ensemble_size
                    10,  # denoise_steps
                    768,  # processing_res
                    "files/cat_depth_16bit.png",
                    "files/cat_depth_fp32.npy",
                    "files/cat_depth_colored.png",
                    0.0,  # plane_near
                    0.3,  # plane_far
                    20,  # embossing
                    3,  # filter_size
                    0,  # frame_near
                ],
                [
                    "files/swings.jpg",
                    10,  # ensemble_size
                    10,  # denoise_steps
                    768,  # processing_res
                    "files/swings_depth_16bit.png",
                    "files/swings_depth_fp32.npy",
                    "files/swings_depth_colored.png",
                    0.05,  # plane_near
                    0.25,  # plane_far
                    10,  # embossing
                    1,  # filter_size
                    0,  # frame_near
                ],
                [
                    "files/einstein.jpg",
                    10,  # ensemble_size
                    10,  # denoise_steps
                    768,  # processing_res
                    "files/einstein_depth_16bit.png",
                    "files/einstein_depth_fp32.npy",
                    "files/einstein_depth_colored.png",
                    0.0,  # plane_near
                    0.5,  # plane_far
                    50,  # embossing
                    3,  # filter_size
                    -15,  # frame_near
                ],
            ],
            inputs=inputs,
            outputs=outputs,
            cache_examples=True,
        )

        demo_3d_header.render()
        demo_3d.render()

        def clear_fn():
            out = []
            for b in blocks_settings:
                out.append(map_id_to_default[b._id])
            out += [
                gr.Button(interactive=True),
                gr.Button(interactive=True),
                gr.Image(value=None, interactive=True),
                None,
                None,
                None,
                None,
                None,
                None,
                None,
            ]
            return out

        clear_btn.click(
            fn=clear_fn,
            inputs=[],
            outputs=blocks_settings
            + [
                submit_btn,
                submit_3d,
                input_image,
                input_output_16bit,
                input_output_fp32,
                input_output_vis,
                output_slider,
                files,
                viewer_3d,
                files_3d,
            ],
        )

        def submit_3d_fn(*args):
            out = list(process_3d(*args))
            out = [gr.Button(interactive=False)] + out
            return out

        submit_3d.click(
            fn=submit_3d_fn,
            inputs=[
                input_image,
                files,
                size_longest_px,
                size_longest_cm,
                filter_size,
                plane_near,
                plane_far,
                embossing,
                frame_thickness,
                frame_near,
                frame_far,
            ],
            outputs=[submit_3d, viewer_3d, files_3d],
            concurrency_limit=1,
        )

        def clear_3d_fn():
            return [gr.Button(interactive=True), None, None]

        clear_3d.click(
            fn=clear_3d_fn,
            inputs=[],
            outputs=[submit_3d, viewer_3d, files_3d],
        )

        demo.queue(
            api_open=False,
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
        )


def main():
    CHECKPOINT = "prs-eth/marigold-v1-0"

    if "HF_TOKEN_LOGIN" in os.environ:
        login(token=os.environ["HF_TOKEN_LOGIN"])

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    pipe = MarigoldPipeline.from_pretrained(CHECKPOINT)
    try:
        import xformers

        pipe.enable_xformers_memory_efficient_attention()
    except:
        pass  # run without xformers

    pipe = pipe.to(device)
    run_demo_server(pipe)


if __name__ == "__main__":
    main()