Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,685 Bytes
536e673 e6b54db 536e673 e6b54db 536e673 e6b54db 536e673 e6b54db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
# Copyright 2024 Anton Obukhov, ETH Zurich. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/prs-eth/Marigold#-citation
# More information about the method can be found at https://marigoldmonodepth.github.io
# --------------------------------------------------------------------------
import math
import os
import numpy as np
import pygltflib
import trimesh
from PIL import Image, ImageFilter
def quaternion_multiply(q1, q2):
x1, y1, z1, w1 = q1
x2, y2, z2, w2 = q2
return [
w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2,
w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2,
w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2,
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2,
]
def glb_add_lights(path_input, path_output):
"""
Adds directional lights in the horizontal plane to the glb file.
:param path_input: path to input glb
:param path_output: path to output glb
:return: None
"""
glb = pygltflib.GLTF2().load(path_input)
N = 3 # default max num lights in Babylon.js is 4
angle_step = 2 * math.pi / N
elevation_angle = math.radians(75)
light_colors = [
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 1.0],
]
lights_extension = {
"lights": [
{"type": "directional", "color": light_colors[i], "intensity": 2.0}
for i in range(N)
]
}
if "KHR_lights_punctual" not in glb.extensionsUsed:
glb.extensionsUsed.append("KHR_lights_punctual")
glb.extensions["KHR_lights_punctual"] = lights_extension
light_nodes = []
for i in range(N):
angle = i * angle_step
pos_rot = [0.0, 0.0, math.sin(angle / 2), math.cos(angle / 2)]
elev_rot = [
math.sin(elevation_angle / 2),
0.0,
0.0,
math.cos(elevation_angle / 2),
]
rotation = quaternion_multiply(pos_rot, elev_rot)
node = {
"rotation": rotation,
"extensions": {"KHR_lights_punctual": {"light": i}},
}
light_nodes.append(node)
light_node_indices = list(range(len(glb.nodes), len(glb.nodes) + N))
glb.nodes.extend(light_nodes)
root_node_index = glb.scenes[glb.scene].nodes[0]
root_node = glb.nodes[root_node_index]
if hasattr(root_node, "children"):
root_node.children.extend(light_node_indices)
else:
root_node.children = light_node_indices
glb.save(path_output)
def extrude_depth_3d(
path_rgb,
path_depth,
output_model_scale=100,
filter_size=3,
coef_near=0.0,
coef_far=1.0,
emboss=0.3,
f_thic=0.05,
f_near=-0.15,
f_back=0.01,
vertex_colors=True,
scene_lights=True,
prepare_for_3d_printing=False,
):
f_far_inner = -emboss
f_far_outer = f_far_inner - f_back
f_near = max(f_near, f_far_inner)
depth_image = Image.open(path_depth)
assert depth_image.mode == "I", depth_image.mode
depth_image = depth_image.filter(ImageFilter.MedianFilter(size=filter_size))
w, h = depth_image.size
d_max = max(w, h)
depth_image = np.array(depth_image).astype(np.double)
z_min, z_max = np.min(depth_image), np.max(depth_image)
depth_image = (depth_image.astype(np.double) - z_min) / (z_max - z_min)
depth_image[depth_image < coef_near] = coef_near
depth_image[depth_image > coef_far] = coef_far
depth_image = emboss * (depth_image - coef_near) / (coef_far - coef_near)
rgb_image = np.array(
Image.open(path_rgb).convert("RGB").resize((w, h), Image.Resampling.LANCZOS)
)
w_norm = w / float(d_max - 1)
h_norm = h / float(d_max - 1)
w_half = w_norm / 2
h_half = h_norm / 2
x, y = np.meshgrid(np.arange(w), np.arange(h))
x = x / float(d_max - 1) - w_half # [-w_half, w_half]
y = -y / float(d_max - 1) + h_half # [-h_half, h_half]
z = -depth_image # -depth_emboss (far) - 0 (near)
vertices_2d = np.stack((x, y, z), axis=-1)
vertices = vertices_2d.reshape(-1, 3)
colors = rgb_image[:, :, :3].reshape(-1, 3) / 255.0
faces = []
for y in range(h - 1):
for x in range(w - 1):
idx = y * w + x
faces.append([idx, idx + w, idx + 1])
faces.append([idx + 1, idx + w, idx + 1 + w])
# OUTER frame
nv = len(vertices)
vertices = np.append(
vertices,
[
[-w_half - f_thic, -h_half - f_thic, f_near], # 00
[-w_half - f_thic, -h_half - f_thic, f_far_outer], # 01
[w_half + f_thic, -h_half - f_thic, f_near], # 02
[w_half + f_thic, -h_half - f_thic, f_far_outer], # 03
[w_half + f_thic, h_half + f_thic, f_near], # 04
[w_half + f_thic, h_half + f_thic, f_far_outer], # 05
[-w_half - f_thic, h_half + f_thic, f_near], # 06
[-w_half - f_thic, h_half + f_thic, f_far_outer], # 07
],
axis=0,
)
faces.extend(
[
[nv + 0, nv + 1, nv + 2],
[nv + 2, nv + 1, nv + 3],
[nv + 2, nv + 3, nv + 4],
[nv + 4, nv + 3, nv + 5],
[nv + 4, nv + 5, nv + 6],
[nv + 6, nv + 5, nv + 7],
[nv + 6, nv + 7, nv + 0],
[nv + 0, nv + 7, nv + 1],
]
)
colors = np.append(colors, [[0.5, 0.5, 0.5]] * 8, axis=0)
# INNER frame
nv = len(vertices)
vertices_left_data = vertices_2d[:, 0] # H x 3
vertices_left_frame = vertices_2d[:, 0].copy() # H x 3
vertices_left_frame[:, 2] = f_near
vertices = np.append(vertices, vertices_left_data, axis=0)
vertices = np.append(vertices, vertices_left_frame, axis=0)
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * h), axis=0)
for i in range(h - 1):
nvi_d = nv + i
nvi_f = nvi_d + h
faces.append([nvi_d, nvi_f, nvi_d + 1])
faces.append([nvi_d + 1, nvi_f, nvi_f + 1])
nv = len(vertices)
vertices_right_data = vertices_2d[:, -1] # H x 3
vertices_right_frame = vertices_2d[:, -1].copy() # H x 3
vertices_right_frame[:, 2] = f_near
vertices = np.append(vertices, vertices_right_data, axis=0)
vertices = np.append(vertices, vertices_right_frame, axis=0)
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * h), axis=0)
for i in range(h - 1):
nvi_d = nv + i
nvi_f = nvi_d + h
faces.append([nvi_d, nvi_d + 1, nvi_f])
faces.append([nvi_d + 1, nvi_f + 1, nvi_f])
nv = len(vertices)
vertices_top_data = vertices_2d[0, :] # H x 3
vertices_top_frame = vertices_2d[0, :].copy() # H x 3
vertices_top_frame[:, 2] = f_near
vertices = np.append(vertices, vertices_top_data, axis=0)
vertices = np.append(vertices, vertices_top_frame, axis=0)
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * w), axis=0)
for i in range(w - 1):
nvi_d = nv + i
nvi_f = nvi_d + w
faces.append([nvi_d, nvi_d + 1, nvi_f])
faces.append([nvi_d + 1, nvi_f + 1, nvi_f])
nv = len(vertices)
vertices_bottom_data = vertices_2d[-1, :] # H x 3
vertices_bottom_frame = vertices_2d[-1, :].copy() # H x 3
vertices_bottom_frame[:, 2] = f_near
vertices = np.append(vertices, vertices_bottom_data, axis=0)
vertices = np.append(vertices, vertices_bottom_frame, axis=0)
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * w), axis=0)
for i in range(w - 1):
nvi_d = nv + i
nvi_f = nvi_d + w
faces.append([nvi_d, nvi_f, nvi_d + 1])
faces.append([nvi_d + 1, nvi_f, nvi_f + 1])
# FRONT frame
nv = len(vertices)
vertices = np.append(
vertices,
[
[-w_half - f_thic, -h_half - f_thic, f_near],
[-w_half - f_thic, h_half + f_thic, f_near],
],
axis=0,
)
vertices = np.append(vertices, vertices_left_frame, axis=0)
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + h), axis=0)
for i in range(h - 1):
faces.append([nv, nv + 2 + i + 1, nv + 2 + i])
faces.append([nv, nv + 2, nv + 1])
nv = len(vertices)
vertices = np.append(
vertices,
[
[w_half + f_thic, h_half + f_thic, f_near],
[w_half + f_thic, -h_half - f_thic, f_near],
],
axis=0,
)
vertices = np.append(vertices, vertices_right_frame, axis=0)
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + h), axis=0)
for i in range(h - 1):
faces.append([nv, nv + 2 + i, nv + 2 + i + 1])
faces.append([nv, nv + h + 1, nv + 1])
nv = len(vertices)
vertices = np.append(
vertices,
[
[w_half + f_thic, h_half + f_thic, f_near],
[-w_half - f_thic, h_half + f_thic, f_near],
],
axis=0,
)
vertices = np.append(vertices, vertices_top_frame, axis=0)
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + w), axis=0)
for i in range(w - 1):
faces.append([nv, nv + 2 + i, nv + 2 + i + 1])
faces.append([nv, nv + 1, nv + 2])
nv = len(vertices)
vertices = np.append(
vertices,
[
[-w_half - f_thic, -h_half - f_thic, f_near],
[w_half + f_thic, -h_half - f_thic, f_near],
],
axis=0,
)
vertices = np.append(vertices, vertices_bottom_frame, axis=0)
colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + w), axis=0)
for i in range(w - 1):
faces.append([nv, nv + 2 + i + 1, nv + 2 + i])
faces.append([nv, nv + 1, nv + w + 1])
# BACK frame
nv = len(vertices)
vertices = np.append(
vertices,
[
[-w_half - f_thic, -h_half - f_thic, f_far_outer], # 00
[w_half + f_thic, -h_half - f_thic, f_far_outer], # 01
[w_half + f_thic, h_half + f_thic, f_far_outer], # 02
[-w_half - f_thic, h_half + f_thic, f_far_outer], # 03
],
axis=0,
)
faces.extend(
[
[nv + 0, nv + 2, nv + 1],
[nv + 2, nv + 0, nv + 3],
]
)
colors = np.append(colors, [[0.5, 0.5, 0.5]] * 4, axis=0)
trimesh_kwargs = {}
if vertex_colors:
trimesh_kwargs["vertex_colors"] = colors
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, **trimesh_kwargs)
mesh.merge_vertices()
current_max_dimension = max(mesh.extents)
scaling_factor = output_model_scale / current_max_dimension
mesh.apply_scale(scaling_factor)
if prepare_for_3d_printing:
rotation_mat = trimesh.transformations.rotation_matrix(
np.radians(90), [-1, 0, 0]
)
mesh.apply_transform(rotation_mat)
path_out_base = os.path.splitext(path_depth)[0].replace("_16bit", "")
path_out_glb = path_out_base + ".glb"
path_out_stl = path_out_base + ".stl"
mesh.export(path_out_glb, file_type="glb")
if scene_lights:
glb_add_lights(path_out_glb, path_out_glb)
mesh.export(path_out_stl, file_type="stl")
return path_out_glb, path_out_stl
|