Spaces:
Running
on
L4
Running
on
L4
File size: 18,402 Bytes
b139995 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
import math
from typing import Callable, Optional, Iterable
import numpy as np
import jax
import jax.numpy as jnp
import flax.linen as nn
from jaxtyping import Array
def trunc_normal(mean=0., std=1., a=-2., b=2., dtype=jnp.float32) -> Callable:
"""Truncated normal initialization function"""
def init(key, shape, dtype=dtype) -> Array:
# https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/weight_init.py
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
out = jax.random.uniform(key, shape, dtype=dtype, minval=2 * l - 1, maxval=2 * u - 1)
out = jax.scipy.special.erfinv(out) * std * math.sqrt(2.) + mean
return jnp.clip(out, a, b)
return init
def Dense(features, use_bias=True, kernel_init=trunc_normal(std=.02), bias_init=nn.initializers.zeros):
return nn.Dense(features, use_bias=use_bias, kernel_init=kernel_init, bias_init=bias_init)
def LayerNorm():
"""torch LayerNorm uses larger epsilon by default"""
return nn.LayerNorm(epsilon=1e-05)
class Mlp(nn.Module):
in_features: int
hidden_features: int = None
out_features: int = None
act_layer: Callable = nn.gelu
drop: float = 0.0
@nn.compact
def __call__(self, x, training: bool):
x = nn.Dense(self.hidden_features or self.in_features)(x)
x = self.act_layer(x)
x = nn.Dropout(self.drop, deterministic=not training)(x)
x = nn.Dense(self.out_features or self.in_features)(x)
x = nn.Dropout(self.drop, deterministic=not training)(x)
return x
def window_partition(x, window_size: int):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.reshape((B, H // window_size, window_size, W // window_size, window_size, C))
windows = x.transpose((0, 1, 3, 2, 4, 5)).reshape((-1, window_size, window_size, C))
return windows
def window_reverse(windows, window_size: int, H: int, W: int):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.reshape((B, H // window_size, W // window_size, window_size, window_size, -1))
x = x.transpose((0, 1, 3, 2, 4, 5)).reshape((B, H, W, -1))
return x
class DropPath(nn.Module):
"""
Implementation referred from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
"""
dropout_prob: float = 0.1
deterministic: Optional[bool] = None
@nn.compact
def __call__(self, input, training):
if not training:
return input
keep_prob = 1 - self.dropout_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1)
rng = self.make_rng("dropout")
random_tensor = keep_prob + jax.random.uniform(rng, shape)
random_tensor = jnp.floor(random_tensor)
return jnp.divide(input, keep_prob) * random_tensor
class WindowAttention(nn.Module):
dim: int
window_size: Iterable[int]
num_heads: int
qkv_bias: bool = True
qk_scale: Optional[float] = None
att_drop: float = 0.0
proj_drop: float = 0.0
def make_rel_pos_index(self):
h_indices = np.arange(0, self.window_size[0])
w_indices = np.arange(0, self.window_size[1])
indices = np.stack(np.meshgrid(w_indices, h_indices, indexing="ij"))
flatten_indices = np.reshape(indices, (2, -1))
relative_indices = flatten_indices[:, :, None] - flatten_indices[:, None, :]
relative_indices = np.transpose(relative_indices, (1, 2, 0))
relative_indices[:, :, 0] += self.window_size[0] - 1
relative_indices[:, :, 1] += self.window_size[1] - 1
relative_indices[:, :, 0] *= 2 * self.window_size[1] - 1
relative_pos_index = np.sum(relative_indices, -1)
return relative_pos_index
@nn.compact
def __call__(self, inputs, mask, training):
rpbt = self.param(
"relative_position_bias_table",
trunc_normal(std=.02),
(
(2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1),
self.num_heads,
),
)
#relative_pos_index = self.variable(
# "variables", "relative_position_index", self.get_rel_pos_index
#)
batch, n, channels = inputs.shape
qkv = nn.Dense(self.dim * 3, use_bias=self.qkv_bias, name="qkv")(inputs)
qkv = qkv.reshape(batch, n, 3, self.num_heads, channels // self.num_heads)
qkv = jnp.transpose(qkv, (2, 0, 3, 1, 4))
q, k, v = qkv[0], qkv[1], qkv[2]
scale = self.qk_scale or (self.dim // self.num_heads) ** -0.5
q = q * scale
att = q @ jnp.swapaxes(k, -2, -1)
rel_pos_bias = jnp.reshape(
rpbt[np.reshape(self.make_rel_pos_index(), (-1))],
(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1,
),
)
rel_pos_bias = jnp.transpose(rel_pos_bias, (2, 0, 1))
att += jnp.expand_dims(rel_pos_bias, 0)
if mask is not None:
att = jnp.reshape(
att, (batch // mask.shape[0], mask.shape[0], self.num_heads, n, n)
)
att = att + jnp.expand_dims(jnp.expand_dims(mask, 1), 0)
att = jnp.reshape(att, (-1, self.num_heads, n, n))
att = jax.nn.softmax(att)
else:
att = jax.nn.softmax(att)
att = nn.Dropout(self.att_drop)(att, deterministic=not training)
x = jnp.reshape(jnp.swapaxes(att @ v, 1, 2), (batch, n, channels))
x = nn.Dense(self.dim, name="proj")(x)
x = nn.Dropout(self.proj_drop)(x, deterministic=not training)
return x
class SwinTransformerBlock(nn.Module):
dim: int
input_resolution: tuple[int]
num_heads: int
window_size: int = 7
shift_size: int = 0
mlp_ratio: float = 4.
qkv_bias: bool = True
qk_scale: Optional[float] = None
drop: float = 0.
attn_drop: float = 0.
drop_path: float = 0.
act_layer: Callable = nn.activation.gelu
norm_layer: Callable = LayerNorm
@staticmethod
def make_att_mask(shift_size, window_size, height, width):
if shift_size > 0:
mask = jnp.zeros([1, height, width, 1])
h_slices = (
slice(0, -window_size),
slice(-window_size, -shift_size),
slice(-shift_size, None),
)
w_slices = (
slice(0, -window_size),
slice(-window_size, -shift_size),
slice(-shift_size, None),
)
count = 0
for h in h_slices:
for w in w_slices:
mask = mask.at[:, h, w, :].set(count)
count += 1
mask_windows = window_partition(mask, window_size)
mask_windows = jnp.reshape(mask_windows, (-1, window_size * window_size))
att_mask = jnp.expand_dims(mask_windows, 1) - jnp.expand_dims(mask_windows, 2)
att_mask = jnp.where(att_mask != 0.0, float(-100.0), att_mask)
att_mask = jnp.where(att_mask == 0.0, float(0.0), att_mask)
else:
att_mask = None
return att_mask
@nn.compact
def __call__(self, x, x_size, training):
H, W = x_size
B, L, C = x.shape
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
shortcut = x
x = self.norm_layer()(x)
x = x.reshape((B, H, W, C))
# cyclic shift
if self.shift_size > 0:
shifted_x = jnp.roll(x, (-self.shift_size, -self.shift_size), axis=(1, 2))
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.reshape((-1, self.window_size * self.window_size, C)) # nW*B, window_size*window_size, C
#attn_mask = self.variable(
# "variables",
# "attn_mask",
# self.get_att_mask,
# self.shift_size,
# self.window_size,
# self.input_resolution[0],
# self.input_resolution[1]
#)
attn_mask = self.make_att_mask(self.shift_size, self.window_size, *self.input_resolution)
attn = WindowAttention(self.dim, (self.window_size, self.window_size), self.num_heads,
self.qkv_bias, self.qk_scale, self.attn_drop, self.drop)
if self.input_resolution == x_size:
attn_windows = attn(x_windows, attn_mask, training) # nW*B, window_size*window_size, C
else:
# test time
assert not training
test_mask = self.make_att_mask(self.shift_size, self.window_size, *x_size)
attn_windows = attn(x_windows, test_mask, training=False)
# merge windows
attn_windows = attn_windows.reshape((-1, self.window_size, self.window_size, C))
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = jnp.roll(shifted_x, (self.shift_size, self.shift_size), axis=(1, 2))
else:
x = shifted_x
x = x.reshape((B, H * W, C))
# FFN
x = shortcut + DropPath(self.drop_path)(x, training)
norm = self.norm_layer()(x)
mlp = Mlp(in_features=self.dim, hidden_features=int(self.dim * self.mlp_ratio),
act_layer=self.act_layer, drop=self.drop)(norm, training)
x = x + DropPath(self.drop_path)(mlp, training)
return x
class PatchMerging(nn.Module):
inp_res: Iterable[int]
dim: int
norm_layer: Callable = LayerNorm
@nn.compact
def __call__(self, inputs):
batch, n, channels = inputs.shape
height, width = self.inp_res[0], self.inp_res[1]
x = jnp.reshape(inputs, (batch, height, width, channels))
x0 = x[:, 0::2, 0::2, :]
x1 = x[:, 1::2, 0::2, :]
x2 = x[:, 0::2, 1::2, :]
x3 = x[:, 1::2, 1::2, :]
x = jnp.concatenate([x0, x1, x2, x3], axis=-1)
x = jnp.reshape(x, (batch, -1, 4 * channels))
x = self.norm_layer()(x)
x = nn.Dense(2 * self.dim, use_bias=False)(x)
return x
class BasicLayer(nn.Module):
dim: int
input_resolution: int
depth: int
num_heads: int
window_size: int
mlp_ratio: float = 4.
qkv_bias: bool = True
qk_scale: Optional[float] = None
drop: float = 0.
attn_drop: float = 0.
drop_path: float = 0.
norm_layer: Callable = LayerNorm
downsample: Optional[Callable] = None
@nn.compact
def __call__(self, x, x_size, training):
for i in range(self.depth):
x = SwinTransformerBlock(
self.dim,
self.input_resolution,
self.num_heads,
self.window_size,
0 if (i % 2 == 0) else self.window_size // 2,
self.mlp_ratio,
self.qkv_bias,
self.qk_scale,
self.drop,
self.attn_drop,
self.drop_path[i] if isinstance(self.drop_path, (list, tuple)) else self.drop_path,
norm_layer=self.norm_layer
)(x, x_size, training)
if self.downsample is not None:
x = self.downsample(self.input_resolution, dim=self.dim, norm_layer=self.norm_layer)(x)
return x
class RSTB(nn.Module):
dim: int
input_resolution: int
depth: int
num_heads: int
window_size: int
mlp_ratio: float = 4.
qkv_bias: bool = True
qk_scale: Optional[float] = None
drop: float = 0.
attn_drop: float = 0.
drop_path: float = 0.
norm_layer: Callable = LayerNorm
downsample: Optional[Callable] = None
img_size: int = 224,
patch_size: int = 4,
resi_connection: str = '1conv'
@nn.compact
def __call__(self, x, x_size, training):
res = x
x = BasicLayer(dim=self.dim,
input_resolution=self.input_resolution,
depth=self.depth,
num_heads=self.num_heads,
window_size=self.window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
drop=self.drop, attn_drop=self.attn_drop,
drop_path=self.drop_path,
norm_layer=self.norm_layer,
downsample=self.downsample)(x, x_size, training)
x = PatchUnEmbed(embed_dim=self.dim)(x, x_size)
# resi_connection == '1conv':
x = nn.Conv(self.dim, (3, 3))(x)
x = PatchEmbed()(x)
return x + res
class PatchEmbed(nn.Module):
norm_layer: Optional[Callable] = None
@nn.compact
def __call__(self, x):
x = x.reshape((x.shape[0], -1, x.shape[-1])) # B Ph Pw C -> B Ph*Pw C
if self.norm_layer is not None:
x = self.norm_layer()(x)
return x
class PatchUnEmbed(nn.Module):
embed_dim: int = 96
@nn.compact
def __call__(self, x, x_size):
B, HW, C = x.shape
x = x.reshape((B, x_size[0], x_size[1], self.embed_dim))
return x
class SwinIR(nn.Module):
r""" SwinIR JAX implementation
Args:
img_size (int | tuple(int)): Input image size. Default 64
patch_size (int | tuple(int)): Patch size. Default: 1
in_chans (int): Number of input image channels. Default: 3
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
img_range: Image range. 1. or 25I think5.
"""
img_size: int = 48
patch_size: int = 1
in_chans: int = 3
embed_dim: int = 180
depths: tuple = (6, 6, 6, 6, 6, 6)
num_heads: tuple = (6, 6, 6, 6, 6, 6)
window_size: int = 8
mlp_ratio: float = 2.
qkv_bias: bool = True
qk_scale: Optional[float] = None
drop_rate: float = 0.
attn_drop_rate: float = 0.
drop_path_rate: float = 0.1
norm_layer: Callable = LayerNorm
ape: bool = False
patch_norm: bool = True
upscale: int = 2
img_range: float = 1.
num_feat: int = 64
def pad(self, x):
_, h, w, _ = x.shape
mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
x = jnp.pad(x, ((0, 0), (0, mod_pad_h), (0, mod_pad_w), (0, 0)), 'reflect')
return x
@nn.compact
def __call__(self, x, training):
_, h_before, w_before, _ = x.shape
x = self.pad(x)
_, h, w, _ = x.shape
patches_resolution = [self.img_size // self.patch_size] * 2
num_patches = patches_resolution[0] * patches_resolution[1]
# conv_first
x = nn.Conv(self.embed_dim, (3, 3))(x)
res = x
# feature extraction
x_size = (h, w)
x = PatchEmbed(self.norm_layer if self.patch_norm else None)(x)
if self.ape:
absolute_pos_embed = \
self.param('ape', trunc_normal(std=.02), (1, num_patches, self.embed_dim))
x = x + absolute_pos_embed
x = nn.Dropout(self.drop_rate, deterministic=not training)(x)
dpr = [x.item() for x in np.linspace(0, self.drop_path_rate, sum(self.depths))]
for i_layer in range(len(self.depths)):
x = RSTB(
dim=self.embed_dim,
input_resolution=(patches_resolution[0], patches_resolution[1]),
depth=self.depths[i_layer],
num_heads=self.num_heads[i_layer],
window_size=self.window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
drop=self.drop_rate, attn_drop=self.attn_drop_rate,
drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
norm_layer=self.norm_layer,
downsample=None,
img_size=self.img_size,
patch_size=self.patch_size)(x, x_size, training)
x = self.norm_layer()(x) # B L C
x = PatchUnEmbed(self.embed_dim)(x, x_size)
# conv_after_body
x = nn.Conv(self.embed_dim, (3, 3))(x)
x = x + res
# conv_before_upsample
x = nn.activation.leaky_relu(nn.Conv(self.num_feat, (3, 3))(x))
# revert padding
x = x[:, :-(h - h_before) or None, :-(w - w_before) or None]
return x
|