File size: 18,402 Bytes
b139995
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import math
from typing import Callable, Optional, Iterable

import numpy as np
import jax
import jax.numpy as jnp
import flax.linen as nn
from jaxtyping import Array


def trunc_normal(mean=0., std=1., a=-2., b=2., dtype=jnp.float32) -> Callable:
    """Truncated normal initialization function"""

    def init(key, shape, dtype=dtype) -> Array:
        # https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/weight_init.py
        def norm_cdf(x):
            # Computes standard normal cumulative distribution function
            return (1. + math.erf(x / math.sqrt(2.))) / 2.

        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)
        out = jax.random.uniform(key, shape, dtype=dtype, minval=2 * l - 1, maxval=2 * u - 1)
        out = jax.scipy.special.erfinv(out) * std * math.sqrt(2.) + mean
        return jnp.clip(out, a, b)

    return init


def Dense(features, use_bias=True, kernel_init=trunc_normal(std=.02), bias_init=nn.initializers.zeros):
    return nn.Dense(features, use_bias=use_bias, kernel_init=kernel_init, bias_init=bias_init)


def LayerNorm():
    """torch LayerNorm uses larger epsilon by default"""
    return nn.LayerNorm(epsilon=1e-05)


class Mlp(nn.Module):

    in_features: int
    hidden_features: int = None
    out_features: int = None
    act_layer: Callable = nn.gelu
    drop: float = 0.0

    @nn.compact
    def __call__(self, x, training: bool):
        x = nn.Dense(self.hidden_features or self.in_features)(x)
        x = self.act_layer(x)
        x = nn.Dropout(self.drop, deterministic=not training)(x)
        x = nn.Dense(self.out_features or self.in_features)(x)
        x = nn.Dropout(self.drop, deterministic=not training)(x)
        return x


def window_partition(x, window_size: int):
    """
    Args:
        x: (B, H, W, C)
        window_size (int): window size

    Returns:
        windows: (num_windows*B, window_size, window_size, C)
    """
    B, H, W, C = x.shape
    x = x.reshape((B, H // window_size, window_size, W // window_size, window_size, C))
    windows = x.transpose((0, 1, 3, 2, 4, 5)).reshape((-1, window_size, window_size, C))
    return windows


def window_reverse(windows, window_size: int, H: int, W: int):
    """
    Args:
        windows: (num_windows*B, window_size, window_size, C)
        window_size (int): Window size
        H (int): Height of image
        W (int): Width of image

    Returns:
        x: (B, H, W, C)
    """
    B = int(windows.shape[0] / (H * W / window_size / window_size))
    x = windows.reshape((B, H // window_size, W // window_size, window_size, window_size, -1))
    x = x.transpose((0, 1, 3, 2, 4, 5)).reshape((B, H, W, -1))
    return x


class DropPath(nn.Module):
    """
    Implementation referred from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/layers/drop.py
    """

    dropout_prob: float = 0.1
    deterministic: Optional[bool] = None

    @nn.compact
    def __call__(self, input, training):
        if not training:
            return input
        keep_prob = 1 - self.dropout_prob
        shape = (input.shape[0],) + (1,) * (input.ndim - 1)
        rng = self.make_rng("dropout")
        random_tensor = keep_prob + jax.random.uniform(rng, shape)
        random_tensor = jnp.floor(random_tensor)
        return jnp.divide(input, keep_prob) * random_tensor


class WindowAttention(nn.Module):
    dim: int
    window_size: Iterable[int]
    num_heads: int
    qkv_bias: bool = True
    qk_scale: Optional[float] = None
    att_drop: float = 0.0
    proj_drop: float = 0.0

    def make_rel_pos_index(self):
        h_indices = np.arange(0, self.window_size[0])
        w_indices = np.arange(0, self.window_size[1])
        indices = np.stack(np.meshgrid(w_indices, h_indices, indexing="ij"))
        flatten_indices = np.reshape(indices, (2, -1))
        relative_indices = flatten_indices[:, :, None] - flatten_indices[:, None, :]
        relative_indices = np.transpose(relative_indices, (1, 2, 0))
        relative_indices[:, :, 0] += self.window_size[0] - 1
        relative_indices[:, :, 1] += self.window_size[1] - 1
        relative_indices[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_pos_index = np.sum(relative_indices, -1)
        return relative_pos_index

    @nn.compact
    def __call__(self, inputs, mask, training):
        rpbt = self.param(
            "relative_position_bias_table",
            trunc_normal(std=.02),
            (
                (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1),
                self.num_heads,
            ),
        )

        #relative_pos_index = self.variable(
        #    "variables", "relative_position_index", self.get_rel_pos_index
        #)

        batch, n, channels = inputs.shape
        qkv = nn.Dense(self.dim * 3, use_bias=self.qkv_bias, name="qkv")(inputs)
        qkv = qkv.reshape(batch, n, 3, self.num_heads, channels // self.num_heads)
        qkv = jnp.transpose(qkv, (2, 0, 3, 1, 4))
        q, k, v = qkv[0], qkv[1], qkv[2]

        scale = self.qk_scale or (self.dim // self.num_heads) ** -0.5
        q = q * scale
        att = q @ jnp.swapaxes(k, -2, -1)

        rel_pos_bias = jnp.reshape(
            rpbt[np.reshape(self.make_rel_pos_index(), (-1))],
            (
                self.window_size[0] * self.window_size[1],
                self.window_size[0] * self.window_size[1],
                -1,
            ),
        )
        rel_pos_bias = jnp.transpose(rel_pos_bias, (2, 0, 1))
        att += jnp.expand_dims(rel_pos_bias, 0)

        if mask is not None:
            att = jnp.reshape(
                att, (batch // mask.shape[0], mask.shape[0], self.num_heads, n, n)
            )
            att = att + jnp.expand_dims(jnp.expand_dims(mask, 1), 0)
            att = jnp.reshape(att, (-1, self.num_heads, n, n))
            att = jax.nn.softmax(att)

        else:
            att = jax.nn.softmax(att)

        att = nn.Dropout(self.att_drop)(att, deterministic=not training)

        x = jnp.reshape(jnp.swapaxes(att @ v, 1, 2), (batch, n, channels))
        x = nn.Dense(self.dim, name="proj")(x)
        x = nn.Dropout(self.proj_drop)(x, deterministic=not training)
        return x


class SwinTransformerBlock(nn.Module):

    dim: int
    input_resolution: tuple[int]
    num_heads: int
    window_size: int = 7
    shift_size: int = 0
    mlp_ratio: float = 4.
    qkv_bias: bool = True
    qk_scale: Optional[float] = None
    drop: float = 0.
    attn_drop: float = 0.
    drop_path: float = 0.
    act_layer: Callable = nn.activation.gelu
    norm_layer: Callable = LayerNorm

    @staticmethod
    def make_att_mask(shift_size, window_size, height, width):
        if shift_size > 0:
            mask = jnp.zeros([1, height, width, 1])
            h_slices = (
                slice(0, -window_size),
                slice(-window_size, -shift_size),
                slice(-shift_size, None),
            )
            w_slices = (
                slice(0, -window_size),
                slice(-window_size, -shift_size),
                slice(-shift_size, None),
            )

            count = 0
            for h in h_slices:
                for w in w_slices:
                    mask = mask.at[:, h, w, :].set(count)
                    count += 1

            mask_windows = window_partition(mask, window_size)
            mask_windows = jnp.reshape(mask_windows, (-1, window_size * window_size))
            att_mask = jnp.expand_dims(mask_windows, 1) - jnp.expand_dims(mask_windows, 2)
            att_mask = jnp.where(att_mask != 0.0, float(-100.0), att_mask)
            att_mask = jnp.where(att_mask == 0.0, float(0.0), att_mask)
        else:
            att_mask = None

        return att_mask

    @nn.compact
    def __call__(self, x, x_size, training):
        H, W = x_size
        B, L, C = x.shape

        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"

        shortcut = x
        x = self.norm_layer()(x)
        x = x.reshape((B, H, W, C))

        # cyclic shift
        if self.shift_size > 0:
            shifted_x = jnp.roll(x, (-self.shift_size, -self.shift_size), axis=(1, 2))
        else:
            shifted_x = x

        # partition windows
        x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
        x_windows = x_windows.reshape((-1, self.window_size * self.window_size, C))  # nW*B, window_size*window_size, C

        #attn_mask = self.variable(
        #    "variables",
        #    "attn_mask",
        #    self.get_att_mask,
        #    self.shift_size,
        #    self.window_size,
        #    self.input_resolution[0],
        #    self.input_resolution[1]
        #)

        attn_mask = self.make_att_mask(self.shift_size, self.window_size, *self.input_resolution)

        attn = WindowAttention(self.dim, (self.window_size, self.window_size), self.num_heads,
                               self.qkv_bias, self.qk_scale, self.attn_drop, self.drop)
        if self.input_resolution == x_size:
            attn_windows = attn(x_windows, attn_mask, training)  # nW*B, window_size*window_size, C
        else:
            # test time
            assert not training
            test_mask = self.make_att_mask(self.shift_size, self.window_size, *x_size)
            attn_windows = attn(x_windows, test_mask, training=False)

        # merge windows
        attn_windows = attn_windows.reshape((-1, self.window_size, self.window_size, C))
        shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = jnp.roll(shifted_x, (self.shift_size, self.shift_size), axis=(1, 2))
        else:
            x = shifted_x

        x = x.reshape((B, H * W, C))

        # FFN
        x = shortcut + DropPath(self.drop_path)(x, training)

        norm = self.norm_layer()(x)
        mlp = Mlp(in_features=self.dim, hidden_features=int(self.dim * self.mlp_ratio),
                  act_layer=self.act_layer, drop=self.drop)(norm, training)
        x = x + DropPath(self.drop_path)(mlp, training)

        return x


class PatchMerging(nn.Module):
    inp_res: Iterable[int]
    dim: int
    norm_layer: Callable = LayerNorm

    @nn.compact
    def __call__(self, inputs):
        batch, n, channels = inputs.shape
        height, width = self.inp_res[0], self.inp_res[1]
        x = jnp.reshape(inputs, (batch, height, width, channels))

        x0 = x[:, 0::2, 0::2, :]
        x1 = x[:, 1::2, 0::2, :]
        x2 = x[:, 0::2, 1::2, :]
        x3 = x[:, 1::2, 1::2, :]

        x = jnp.concatenate([x0, x1, x2, x3], axis=-1)
        x = jnp.reshape(x, (batch, -1, 4 * channels))
        x = self.norm_layer()(x)
        x = nn.Dense(2 * self.dim, use_bias=False)(x)
        return x


class BasicLayer(nn.Module):

    dim: int
    input_resolution: int
    depth: int
    num_heads: int
    window_size: int
    mlp_ratio: float = 4.
    qkv_bias: bool = True
    qk_scale: Optional[float] = None
    drop: float = 0.
    attn_drop: float = 0.
    drop_path: float = 0.
    norm_layer: Callable = LayerNorm
    downsample: Optional[Callable] = None

    @nn.compact
    def __call__(self, x, x_size, training):
        for i in range(self.depth):
            x = SwinTransformerBlock(
                self.dim,
                self.input_resolution,
                self.num_heads,
                self.window_size,
                0 if (i % 2 == 0) else self.window_size // 2,
                self.mlp_ratio,
                self.qkv_bias,
                self.qk_scale,
                self.drop,
                self.attn_drop,
                self.drop_path[i] if isinstance(self.drop_path, (list, tuple)) else self.drop_path,
                norm_layer=self.norm_layer
            )(x, x_size, training)

        if self.downsample is not None:
            x = self.downsample(self.input_resolution, dim=self.dim, norm_layer=self.norm_layer)(x)

        return x


class RSTB(nn.Module):

    dim: int
    input_resolution: int
    depth: int
    num_heads: int
    window_size: int
    mlp_ratio: float = 4.
    qkv_bias: bool = True
    qk_scale: Optional[float] = None
    drop: float = 0.
    attn_drop: float = 0.
    drop_path: float = 0.
    norm_layer: Callable = LayerNorm
    downsample: Optional[Callable] = None
    img_size: int = 224,
    patch_size: int = 4,
    resi_connection: str = '1conv'

    @nn.compact
    def __call__(self, x, x_size, training):
        res = x
        x = BasicLayer(dim=self.dim,
                       input_resolution=self.input_resolution,
                       depth=self.depth,
                       num_heads=self.num_heads,
                       window_size=self.window_size,
                       mlp_ratio=self.mlp_ratio,
                       qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
                       drop=self.drop, attn_drop=self.attn_drop,
                       drop_path=self.drop_path,
                       norm_layer=self.norm_layer,
                       downsample=self.downsample)(x, x_size, training)

        x = PatchUnEmbed(embed_dim=self.dim)(x, x_size)

        # resi_connection == '1conv':
        x = nn.Conv(self.dim, (3, 3))(x)

        x = PatchEmbed()(x)

        return x + res


class PatchEmbed(nn.Module):
    norm_layer: Optional[Callable] = None

    @nn.compact
    def __call__(self, x):
        x = x.reshape((x.shape[0], -1, x.shape[-1]))  # B Ph Pw C -> B Ph*Pw C
        if self.norm_layer is not None:
            x = self.norm_layer()(x)
        return x


class PatchUnEmbed(nn.Module):
    embed_dim: int = 96

    @nn.compact
    def __call__(self, x, x_size):
        B, HW, C = x.shape
        x = x.reshape((B, x_size[0], x_size[1], self.embed_dim))
        return x


class SwinIR(nn.Module):
    r""" SwinIR JAX implementation
    Args:
        img_size (int | tuple(int)): Input image size. Default 64
        patch_size (int | tuple(int)): Patch size. Default: 1
        in_chans (int): Number of input image channels. Default: 3
        embed_dim (int): Patch embedding dimension. Default: 96
        depths (tuple(int)): Depth of each Swin Transformer layer.
        num_heads (tuple(int)): Number of attention heads in different layers.
        window_size (int): Window size. Default: 7
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
        ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
        patch_norm (bool): If True, add normalization after patch embedding. Default: True
        upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
        img_range: Image range. 1. or 25I think5.
    """

    img_size: int = 48
    patch_size: int = 1
    in_chans: int = 3
    embed_dim: int = 180
    depths: tuple = (6, 6, 6, 6, 6, 6)
    num_heads: tuple = (6, 6, 6, 6, 6, 6)
    window_size: int = 8
    mlp_ratio: float = 2.
    qkv_bias: bool = True
    qk_scale: Optional[float] = None
    drop_rate: float = 0.
    attn_drop_rate: float = 0.
    drop_path_rate: float = 0.1
    norm_layer: Callable = LayerNorm
    ape: bool = False
    patch_norm: bool = True
    upscale: int = 2
    img_range: float = 1.
    num_feat: int = 64

    def pad(self, x):
        _, h, w, _ = x.shape
        mod_pad_h = (self.window_size - h % self.window_size) % self.window_size
        mod_pad_w = (self.window_size - w % self.window_size) % self.window_size
        x = jnp.pad(x, ((0, 0), (0, mod_pad_h), (0, mod_pad_w), (0, 0)), 'reflect')
        return x

    @nn.compact
    def __call__(self, x, training):
        _, h_before, w_before, _ = x.shape
        x = self.pad(x)
        _, h, w, _ = x.shape
        patches_resolution = [self.img_size // self.patch_size] * 2
        num_patches = patches_resolution[0] * patches_resolution[1]

        # conv_first
        x = nn.Conv(self.embed_dim, (3, 3))(x)
        res = x

        # feature extraction
        x_size = (h, w)
        x = PatchEmbed(self.norm_layer if self.patch_norm else None)(x)

        if self.ape:
            absolute_pos_embed = \
                self.param('ape', trunc_normal(std=.02), (1, num_patches, self.embed_dim))
            x = x + absolute_pos_embed

        x = nn.Dropout(self.drop_rate, deterministic=not training)(x)

        dpr = [x.item() for x in np.linspace(0, self.drop_path_rate, sum(self.depths))]
        for i_layer in range(len(self.depths)):
            x = RSTB(
                dim=self.embed_dim,
                input_resolution=(patches_resolution[0], patches_resolution[1]),
                depth=self.depths[i_layer],
                num_heads=self.num_heads[i_layer],
                window_size=self.window_size,
                mlp_ratio=self.mlp_ratio,
                qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
                drop=self.drop_rate, attn_drop=self.attn_drop_rate,
                drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
                norm_layer=self.norm_layer,
                downsample=None,
                img_size=self.img_size,
                patch_size=self.patch_size)(x, x_size, training)

        x = self.norm_layer()(x)  # B L C
        x = PatchUnEmbed(self.embed_dim)(x, x_size)

        # conv_after_body
        x = nn.Conv(self.embed_dim, (3, 3))(x)
        x = x + res

        # conv_before_upsample
        x = nn.activation.leaky_relu(nn.Conv(self.num_feat, (3, 3))(x))

        # revert padding
        x = x[:, :-(h - h_before) or None, :-(w - w_before) or None]
        return x