Spaces:
Running
on
L4
Running
on
L4
from functools import partial | |
import jax | |
import numpy as np | |
def repeat_vmap(fun, in_axes=[0]): | |
for axes in in_axes: | |
fun = jax.vmap(fun, in_axes=axes) | |
return fun | |
def make_grid(patch_size: int | tuple[int, int]): | |
if isinstance(patch_size, int): | |
patch_size = (patch_size, patch_size) | |
offset_h, offset_w = 1 / (2 * np.array(patch_size)) | |
space_h = np.linspace(-0.5 + offset_h, 0.5 - offset_h, patch_size[0]) | |
space_w = np.linspace(-0.5 + offset_w, 0.5 - offset_w, patch_size[1]) | |
return np.stack(np.meshgrid(space_h, space_w, indexing='ij'), axis=-1) # [h, w] | |
def interpolate_grid(coords, grid, order=0): | |
""" | |
args: | |
coords: Tensor of shape (B, H, W, 2) with coordinates in [-0.5, 0.5] | |
grid: Tensor of shape (B, H', W', C) | |
returns: | |
Tensor of shape (B, H, W, C) with interpolated values | |
""" | |
# convert [-0.5, 0.5] -> [0, size], where pixel centers are expected at | |
# [-0.5 + 1 / (2*size), ..., 0.5 - 1 / (2*size)] | |
coords = coords.transpose((0, 3, 1, 2)) | |
coords = coords.at[:, 0].set(coords[:, 0] * grid.shape[-3] + (grid.shape[-3] - 1) / 2) | |
coords = coords.at[:, 1].set(coords[:, 1] * grid.shape[-2] + (grid.shape[-2] - 1) / 2) | |
map_coordinates = partial(jax.scipy.ndimage.map_coordinates, order=order, mode='nearest') | |
return jax.vmap(jax.vmap(map_coordinates, in_axes=(2, None), out_axes=2))(grid, coords) | |