import math import jax import jax.numpy as jnp import flax.linen as nn from jaxtyping import Array, ArrayLike, PyTreeDef import numpy as np from utils import interpolate_grid class Hypernetwork(nn.Module): encoder: nn.Module refine: nn.Module output_params_shape: list[tuple] # e.g. [(16,), (32, 32), ...] tree_def: PyTreeDef # used to reconstruct the parameter sets def setup(self): # one layer 1x1 conv to calculate field params, as in SIREN paper output_size = sum(math.prod(s) for s in self.output_params_shape) self.out_conv = nn.Conv(output_size, kernel_size=(1, 1), use_bias=True) def get_encoding(self, source: ArrayLike, training=False) -> Array: """Convenience method for whole-image evaluation""" return self.refine(self.encoder(source, training), training) def get_params_at_coords(self, encoding: ArrayLike, coords: ArrayLike) -> Array: encoding = interpolate_grid(coords, encoding) phi_params = self.out_conv(encoding) # reshape to output params shape phi_params = jnp.split( phi_params, np.cumsum([math.prod(s) for s in self.output_params_shape[:-1]]), axis=-1) phi_params = [jnp.reshape(p, p.shape[:-1] + s) for p, s in zip(phi_params, self.output_params_shape)] return jax.tree_util.tree_unflatten(self.tree_def, phi_params) def __call__(self, source: ArrayLike, target_coords: ArrayLike, training=False) -> Array: encoding = self.get_encoding(source, training) return self.get_params_at_coords(encoding, target_coords)