Spaces:
Sleeping
Sleeping
File size: 2,953 Bytes
cf73590 62621a3 cf73590 62621a3 cf73590 62621a3 cf73590 62621a3 cf73590 407bc71 cf73590 62621a3 81d48d9 62621a3 cf73590 12a4fc3 d037418 62621a3 cf73590 4eb3786 cf73590 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import gradio as gr
import requests
import geopandas as gpd
from shapely.geometry import Point
import pandas as pd
def process_input(address, selected_option, additional_input):
transport_analysis_needed = True
response = requests.get(
f"https://geosearch.planninglabs.nyc/v2/autocomplete?text={address}"
)
data = response.json()
address = data["features"][0]["properties"]["label"]
output_address = f"{address}"
output_option = f"{selected_option}"
x = data["features"][0]["geometry"]["coordinates"]
# Load the GeoJSON file into a GeoDataFrame
geodata = gpd.read_file("./zone_data.geojson")
# Create a Point for the given coordinates
location_point = Point(x[0], x[1])
# Find the zone that the location point is in
zone = geodata[geodata.geometry.contains(location_point)]["id"].values.item()
# Load Zone Table of Transportation Analysis
df = pd.read_csv("./zone_table.csv")
df = df.loc[df['Development Type']==selected_option]
threshold_value = df.loc[:, f"Zone {zone}"].values.item()
if additional_input < threshold_value:
transport_analysis_needed = False
if selected_option in ["Off-Street Parking Facility", "Residential"]:
output_additional = f"Number of Units/Spaces:\n{additional_input}"
else:
output_additional = f"Area (in 1000 GSF):\n{additional_input}"
if (transport_analysis_needed):
output_transport_analysis = (
f"{transport_analysis_needed} (Because proposed developing units/space is larger than {threshold_value})"
)
else:
output_transport_analysis = (
f"{transport_analysis_needed} (Because proposed developing units/space is smaller than {threshold_value})"
)
output_zone = f"{zone}"
return (
output_address,
output_option,
output_additional,
output_transport_analysis,
output_zone,
)
iface = gr.Interface(
fn=process_input,
inputs=[
gr.inputs.Textbox(label="Enter your address"),
gr.inputs.Radio(
[
"Residential",
"Office",
"Regional Retail",
"Local Retail",
"Sit Down/High Turnover Restaurant",
"Fast Food/without Drive Through",
"Community Facility",
"Off-Street Parking Facility",
],
label="Select an option",
),
gr.inputs.Number(
label="Number of Units/Spaces or Area (in 1000 GSF)", default=1
), # Default value is 1
],
outputs=[
gr.outputs.Textbox(label="Address"),
gr.outputs.Textbox(label="Selected Option"),
gr.outputs.Textbox(label="Number of Units/Spaces or Area"),
gr.outputs.Textbox(label="Transport Analysis Needed"),
gr.outputs.Textbox(label="Zone"),
],
)
iface.launch()
|