GaiaMiniMed / app.py
Tonic's picture
Update app.py
2be2050
raw
history blame
5.06 kB
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
import random
from textwrap import wrap
# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def multimodal_prompt(user_input, system_prompt):
"""
Generates text using a large language model, given a user input and a system prompt.
Args:
user_input: The user's input text to generate a response for.
system_prompt: Optional system prompt.
Returns:
A string containing the generated text in the Falcon-like format.
"""
# Combine user input and system prompt
formatted_input = f"{{{{ {system_prompt} }}}}\nUser: {user_input}\nFalcon:"
# Encode the input text
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
# Generate a response using the model
output = peft_model.generate(
**model_inputs,
max_length=500,
use_cache=True,
early_stopping=False,
bos_token_id=peft_model.config.bos_token_id,
eos_token_id=peft_model.config.eos_token_id,
pad_token_id=peft_model.config.eos_token_id,
temperature=0.4,
do_sample=True
)
# Decode the response
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use the base model's ID
base_model_id = "tiiuae/falcon-7b-instruct"
model_directory = "Tonic/GaiaMiniMed"
# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
# tokenizer.pad_token = tokenizer.eos_token
# tokenizer.padding_side = 'left'
# Load the GaiaMiniMed model with the specified configuration
# Load the Peft model with a specific configuration
# Specify the configuration class for the model
model_config = AutoConfig.from_pretrained(base_model_id)
# Load the PEFT model with the specified configuration
peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config)
peft_model = PeftModel.from_pretrained(peft_model, model_directory)
# Specify the configuration class for the model
#model_config = AutoConfig.from_pretrained(base_model_id)
# Load the PEFT model with the specified configuration
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
# Load the PEFT model
# peft_config = PeftConfig.from_pretrained("Tonic/mistralmed")
# peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
# peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed")
class ChatBot:
def __init__(self, system_prompt="You are an expert medical analyst:"):
self.system_prompt = system_prompt
self.history = []
def predict(self, user_input, system_prompt):
# Combine the user's input with the system prompt in Falcon format
formatted_input = f"{{{{ {self.system_prompt} }}}}\nUser: {user_input}\nFalcon:"
# Encode the formatted input using the tokenizer
input_ids = tokenizer.encode(formatted_input, return_tensors="pt", add_special_tokens=False)
# Generate a response using the model
response = peft_model.generate(input_ids=input_ids, max_length=500, use_cache=False, early_stopping=False, bos_token_id=peft_model.config.bos_token_id, eos_token_id=peft_model.config.eos_token_id, pad_token_id=peft_model.config.eos_token_id, temperature=0.4, do_sample=True)
# Decode the generated response to text
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
# Append the Falcon-like conversation to the history
self.history.append(formatted_input)
self.history.append(response_text)
return response_text
bot = ChatBot()
title = "👋🏻Welcome to Tonic's GaiaMiniMed Chat🚀"
description = "You can use this Space to test out the current model [(Tonic/GaiaMiniMed)](https://huggingface.co/Tonic/GaiaMiniMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
examples = [["What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs=["text", "text"], # Take user input and system prompt separately
outputs="text",
theme="ParityError/Anime"
)
iface.launch()