Spaces:
Runtime error
Runtime error
File size: 4,557 Bytes
b5fe4ce 6ebcdab 55db529 3dc4061 3202d1b 3dc4061 3202d1b 3dc4061 8867e8a b5fe4ce c30f436 3dc4061 b5fe4ce 3dc4061 237d9d2 bdec0c5 bf9669d bdec0c5 bf9669d bdec0c5 81395fc b5fe4ce bf07a1e 237d9d2 bf07a1e 237d9d2 1b29238 3202d1b bf07a1e 3202d1b 1b29238 bf07a1e 3202d1b 1b29238 81395fc 6c18f3e 1b29238 bf07a1e 1b29238 bf07a1e 1b29238 237d9d2 1b29238 483b4b0 b5fe4ce 1b29238 b01335d 1b29238 b01335d 3202d1b b01335d 50305bc b01335d 1b29238 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
import random
from textwrap import wrap
# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
# Combine user input and system prompt
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
# Encode the input text
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
# Generate a response using the model
output = model.generate(
**model_inputs,
max_length=max_length,
use_cache=True,
early_stopping=True,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
temperature=0.1,
do_sample=True
)
# Decode the response
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use the base model's ID
base_model_id = "HuggingFaceH4/zephyr-7b-beta"
model_directory = "pseudolab/K23_MiniMed"
# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta", trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("pseudolab/K23_MiniMed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Specify the configuration class for the model
#model_config = AutoConfig.from_pretrained(base_model_id)
# Load the PEFT model with the specified configuration
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
# Load the PEFT model
peft_config = PeftConfig.from_pretrained("pseudolab/K23_MiniMed")
peft_model = MistralForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta", trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "pseudolab/K23_MiniMed")
class ChatBot:
def __init__(self):
self.history = []
class ChatBot:
def __init__(self):
# Initialize the ChatBot class with an empty history
self.history = []
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
# Combine the user's input with the system prompt
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
# Encode the formatted input using the tokenizer
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
# Generate a response using the PEFT model
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
# Decode the generated response to text
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text # Return the generated response
bot = ChatBot()
title = "👋🏻토닉의 미스트랄메드 채팅에 오신 것을 환영합니다🚀👋🏻Welcome to Tonic's MistralMed Chat🚀"
description = "이 공간을 사용하여 현재 모델을 테스트할 수 있습니다. [pseudolab/K23_MiniMed](https://huggingface.co/pseudolab/K23_MiniMed) 또는 이 공간을 복제하고 로컬 또는 🤗HuggingFace에서 사용할 수 있습니다. [Discord에서 함께 만들기 위해 Discord에 가입하십시오](https://discord.gg/VqTxc76K3u). You can use this Space to test out the current model [pseudolab/K23_MiniMed](https://huggingface.co/pseudolab/K23_MiniMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs=["text", "text"], # Take user input and system prompt separately
outputs="text",
theme="pseudolab/huggingface-korea-theme"
)
iface.launch() |