K23MiniMed / app.py
Tonic's picture
Update app.py
4c79a74
raw
history blame
2.11 kB
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
import gradio as gr
config = PeftConfig.from_pretrained("Tonic/mistralmed")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
model = PeftModel.from_pretrained(model, "Tonic/mistralmed")
# Use the base model's ID
base_model_id = "mistralai/Mistral-7B-v0.1"
model_directory = "Tonic/mistralmed"
# Load the fine-tuned model "Tonic/mistralmed"
model = AutoModelForCausalLM.from_pretrained(model_directory, token="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")
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
class ChatBot:
def __init__(self):
self.history = []
def predict(self, input):
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt")
flat_history = [item for sublist in self.history for item in sublist]
flat_history_tensor = torch.tensor(flat_history).unsqueeze(dim=0)
bot_input_ids = torch.cat([flat_history_tensor, new_user_input_ids], dim=-1) if self.history else new_user_input_ids
chat_history_ids = model.generate(bot_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
self.history.append(chat_history_ids[:, bot_input_ids.shape[-1]:].tolist()[0])
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
bot = ChatBot()
title = "👋🏻Welcome to Tonic's MistralMed Chat🚀"
description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together."
examples = [["What is the boiling point of nitrogen"]]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs="text",
outputs="text",
theme="ParityError/Anime"
)
iface.launch()