Spaces:
Paused
Paused
Updating app.py to use gaia minimed's model (first try)
Browse files
app.py
CHANGED
@@ -1,19 +1,63 @@
|
|
1 |
import random
|
2 |
import time
|
|
|
3 |
import gradio as gr
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
class ChatbotInterface():
|
9 |
-
def __init__(self, name):
|
10 |
self.name = name
|
|
|
11 |
self.chatbot = gr.Chatbot()
|
12 |
self.chat_history = []
|
13 |
|
14 |
with gr.Row() as row:
|
15 |
row.justify = "end"
|
16 |
self.msg = gr.Textbox(scale=7)
|
|
|
17 |
self.submit = gr.Button("Submit", scale=1)
|
18 |
|
19 |
clear = gr.ClearButton([self.msg, self.chatbot])
|
@@ -22,13 +66,48 @@ class ChatbotInterface():
|
|
22 |
self.submit.click(self.respond, [self.msg, self.chatbot], [self.msg, self.chatbot])
|
23 |
|
24 |
def respond(self, msg, history):
|
25 |
-
bot_message = random.choice(["Hello, I'm MedChat! How can I help you?", "Hello there! I'm Medchat, a medical assistant! How can I help you?"])
|
26 |
-
self.
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
return "", self.chat_history
|
29 |
|
30 |
if __name__ == "__main__":
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
with gr.Row() as intro:
|
33 |
gr.Markdown(
|
34 |
"""
|
@@ -47,14 +126,9 @@ if __name__ == "__main__":
|
|
47 |
mistral_bot = ChatbotInterface("MistralMed")
|
48 |
with gr.Tab("Falcon-7B") as falcon7b:
|
49 |
falcon_bot = ChatbotInterface("Falcon-7B")
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
element.msg.value = value
|
55 |
-
element.submit.click()
|
56 |
-
|
57 |
-
submit_all = gr.Button("Submit to All", scale=1)
|
58 |
-
submit_all.click(submit_to_all, [gaia_bot.msg])
|
59 |
|
60 |
demo.launch()
|
|
|
1 |
import random
|
2 |
import time
|
3 |
+
import torch
|
4 |
import gradio as gr
|
5 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
6 |
+
from peft import PeftModel, PeftConfig
|
7 |
+
from textwrap import wrap, fill
|
8 |
|
9 |
+
# Functions to Wrap the Prompt Correctly
|
10 |
+
def wrap_text(text, width=90):
|
11 |
+
lines = text.split('\n')
|
12 |
+
wrapped_lines = [fill(line, width=width) for line in lines]
|
13 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
14 |
+
return wrapped_text
|
15 |
+
|
16 |
+
def multimodal_prompt(user_input, system_prompt):
|
17 |
+
"""
|
18 |
+
Generates text using a large language model, given a user input and a system prompt.
|
19 |
+
Args:
|
20 |
+
user_input: The user's input text to generate a response for.
|
21 |
+
system_prompt: Optional system prompt.
|
22 |
+
Returns:
|
23 |
+
A string containing the generated text in the Falcon-like format.
|
24 |
+
"""
|
25 |
+
# Combine user input and system prompt
|
26 |
+
formatted_input = f"{{{{ {system_prompt} }}}}\nUser: {user_input}\nFalcon:"
|
27 |
+
|
28 |
+
# Encode the input text
|
29 |
+
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
30 |
+
model_inputs = encodeds.to(device)
|
31 |
+
|
32 |
+
# Generate a response using the model
|
33 |
+
output = peft_model.generate(
|
34 |
+
**model_inputs,
|
35 |
+
max_length=500,
|
36 |
+
use_cache=True,
|
37 |
+
early_stopping=False,
|
38 |
+
bos_token_id=peft_model.config.bos_token_id,
|
39 |
+
eos_token_id=peft_model.config.eos_token_id,
|
40 |
+
pad_token_id=peft_model.config.eos_token_id,
|
41 |
+
temperature=0.4,
|
42 |
+
do_sample=True
|
43 |
+
)
|
44 |
+
|
45 |
+
# Decode the response
|
46 |
+
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
47 |
+
|
48 |
+
return response_text
|
49 |
|
50 |
class ChatbotInterface():
|
51 |
+
def __init__(self, name, system_prompt="You are an expert medical analyst that helps users with any medical related information."):
|
52 |
self.name = name
|
53 |
+
self.system_prompt = system_prompt
|
54 |
self.chatbot = gr.Chatbot()
|
55 |
self.chat_history = []
|
56 |
|
57 |
with gr.Row() as row:
|
58 |
row.justify = "end"
|
59 |
self.msg = gr.Textbox(scale=7)
|
60 |
+
#self.msg.change(fn=, inputs=, outputs=)
|
61 |
self.submit = gr.Button("Submit", scale=1)
|
62 |
|
63 |
clear = gr.ClearButton([self.msg, self.chatbot])
|
|
|
66 |
self.submit.click(self.respond, [self.msg, self.chatbot], [self.msg, self.chatbot])
|
67 |
|
68 |
def respond(self, msg, history):
|
69 |
+
#bot_message = random.choice(["Hello, I'm MedChat! How can I help you?", "Hello there! I'm Medchat, a medical assistant! How can I help you?"])
|
70 |
+
formatted_input = f"{{{{ {self.system_prompt} }}}}\nUser: {msg}\n{self.name}:"
|
71 |
+
input_ids = tokenizer.encode(
|
72 |
+
formatted_input,
|
73 |
+
return_tensors="pt",
|
74 |
+
add_special_tokens=False
|
75 |
+
)
|
76 |
+
response = peft_model.generate(
|
77 |
+
input_ids=input_ids,
|
78 |
+
max_length=900,
|
79 |
+
use_cache=False,
|
80 |
+
early_stopping=False,
|
81 |
+
bos_token_id=peft_model.config.bos_token_id,
|
82 |
+
eos_token_id=peft_model.config.eos_token_id,
|
83 |
+
pad_token_id=peft_model.config.eos_token_id,
|
84 |
+
temperature=0.4,
|
85 |
+
do_sample=True
|
86 |
+
)
|
87 |
+
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
88 |
+
|
89 |
+
self.chat_history.append([formatted_input, response_text])
|
90 |
+
|
91 |
return "", self.chat_history
|
92 |
|
93 |
if __name__ == "__main__":
|
94 |
+
# Define the device
|
95 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
96 |
+
|
97 |
+
# Use the base model's ID
|
98 |
+
base_model_id = "tiiuae/falcon-7b-instruct"
|
99 |
+
model_directory = "Tonic/GaiaMiniMed"
|
100 |
+
|
101 |
+
# Instantiate the Tokenizer
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left")
|
103 |
+
|
104 |
+
# Specify the configuration class for the model
|
105 |
+
model_config = AutoConfig.from_pretrained(base_model_id)
|
106 |
+
# Load the PEFT model with the specified configuration
|
107 |
+
peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config)
|
108 |
+
peft_model = PeftModel.from_pretrained(peft_model, model_directory)
|
109 |
+
|
110 |
+
with gr.Blocks() as demo:
|
111 |
with gr.Row() as intro:
|
112 |
gr.Markdown(
|
113 |
"""
|
|
|
126 |
mistral_bot = ChatbotInterface("MistralMed")
|
127 |
with gr.Tab("Falcon-7B") as falcon7b:
|
128 |
falcon_bot = ChatbotInterface("Falcon-7B")
|
129 |
+
|
130 |
+
gaia_bot.msg.change(fn=lambda s: (s[::1], s[::1]), inputs=gaia_bot.msg, outputs=[mistral_bot.msg, falcon_bot.msg])
|
131 |
+
mistral_bot.msg.change(fn=lambda s: (s[::1], s[::1]), inputs=mistral_bot.msg, outputs=[gaia_bot.msg, falcon_bot.msg])
|
132 |
+
falcon_bot.msg.change(fn=lambda s: (s[::1], s[::1]), inputs=falcon_bot.msg, outputs=[gaia_bot.msg, mistral_bot.msg])
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
demo.launch()
|