import os import torch import gradio as gr import requests from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM from peft import PeftModel, PeftConfig from textwrap import wrap, fill ## using Falcon 7b Instruct Falcon_API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct" hf_token = os.getenv("HUGGINGFACE_TOKEN") HEADERS = {"Authorization": "Bearer {hf_token}"} def falcon_query(payload): response = requests.post(Falcon_API_URL, headers=HEADERS, json=payload) return response.json() def falcon_inference(input_text): payload = {"inputs": input_text} return falcon_query(payload) ## using Mistral Mistral_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1" def mistral_query(payload): response = requests.post(Mistral_API_URL , headers=HEADERS, json=payload) return response.json() def mistral_inference(input_text): payload = {"inputs": input_text} return mistral_query(payload) # Functions to Wrap the Prompt Correctly def wrap_text(text, width=90): lines = text.split('\n') wrapped_lines = [fill(line, width=width) for line in lines] wrapped_text = '\n'.join(wrapped_lines) return wrapped_text class ChatbotInterface(): def __init__(self, name, system_prompt="You are an expert medical analyst that helps users with any medical related information."): self.name = name self.system_prompt = system_prompt self.chatbot = gr.Chatbot() self.chat_history = [] with gr.Row() as row: row.justify = "end" self.msg = gr.Textbox(scale=7) #self.msg.change(fn=, inputs=, outputs=) self.submit = gr.Button("Submit", scale=1) clear = gr.ClearButton([self.msg, self.chatbot]) chat_history = [] self.submit.click(self.respond, [self.msg, self.chatbot], [self.msg, self.chatbot]) def respond(self, msg, chatbot): raise NotImplementedError class GaiaMinimed(ChatbotInterface): def __init__(self, name, system_prompt="You are an expert medical analyst that helps users with any medical related information."): super().__init__(name, system_prompt) def respond(self, msg, history): formatted_input = f"{{{{ {self.system_prompt} }}}}\nUser: {msg}\n{self.name}:" input_ids = tokenizer.encode( formatted_input, return_tensors="pt", add_special_tokens=False ) response = peft_model.generate( input_ids=input_ids, max_length=500, use_cache=False, early_stopping=False, bos_token_id=peft_model.config.bos_token_id, eos_token_id=peft_model.config.eos_token_id, pad_token_id=peft_model.config.eos_token_id, temperature=0.4, do_sample=True ) response_text = tokenizer.decode(response[0], skip_special_tokens=True) self.chat_history.append([formatted_input, response_text]) return "", self.chat_history class FalconBot(ChatbotInterface): def __init__(self, name, system_prompt="You are an expert medical analyst that helps users with any medical related information."): super().__init__(name, system_prompt) def respond(self, msg, chatbot): falcon_response = falcon_inference(msg) falcon_output = falcon_response[0]["generated_text"] self.chat_history.append([msg, falcon_output]) return "", falcon_output class MistralBot(ChatbotInterface): def __init__(self, name, system_prompt="You are an expert medical analyst that helps users with any medical related information."): super().__init__(name, system_prompt) def respond(self, msg, chatbot): mistral_response = mistral_inference(msg) mistral_output = mistral_response[0]["generated_text"] self.chat_history.append([msg, mistral_output]) return "", mistral_output if __name__ == "__main__": # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" # Use the base model's ID base_model_id = "tiiuae/falcon-7b-instruct" model_directory = "Tonic/GaiaMiniMed" # Instantiate the Tokenizer tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left") # Specify the configuration class for the model model_config = AutoConfig.from_pretrained(base_model_id) # Load the PEFT model with the specified configuration peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config) peft_model = PeftModel.from_pretrained(peft_model, model_directory) with gr.Blocks() as demo: with gr.Row() as intro: gr.Markdown( """ ## MedChat Welcome to MedChat, a medical assistant chatbot! You can currently chat with three chatbots that are trained on the same medical dataset. If you want to compare the output of each model, click the submit to all button and see the magic happen! """ ) with gr.Row() as row: with gr.Column() as col1: with gr.Tab("GaiaMinimed") as gaia: gaia_bot = GaiaMinimed("GaiaMinimed") with gr.Column() as col2: with gr.Tab("MistralMed") as mistral: mistral_bot = MistralBot("MistralMed") with gr.Tab("Falcon-7B") as falcon7b: falcon_bot = FalconBot("Falcon-7B") gaia_bot.msg.input(fn=lambda s: (s[::1], s[::1]), inputs=gaia_bot.msg, outputs=[mistral_bot.msg, falcon_bot.msg]) mistral_bot.msg.input(fn=lambda s: (s[::1], s[::1]), inputs=mistral_bot.msg, outputs=[gaia_bot.msg, falcon_bot.msg]) falcon_bot.msg.input(fn=lambda s: (s[::1], s[::1]), inputs=falcon_bot.msg, outputs=[gaia_bot.msg, mistral_bot.msg]) demo.launch()