Spaces:
Running
Running
import cv2 | |
import numpy as np | |
from skimage.util import view_as_windows | |
from skimage.exposure import match_histograms | |
class ImgProcess: | |
def __init__(self, img1 = None, img2 = None): | |
self.img1 = None | |
self.img2 = None | |
self.img1LAB = None | |
self.img2LAB = None | |
self.load(img1, img2) | |
def load(self, img1 = None, img2 = None): | |
if img1 != None: | |
self.img1 = cv2.cvtColor(np.array(img1), cv2.COLOR_RGB2BGR) | |
if img2 != None: | |
self.img2 = cv2.cvtColor(np.array(img2), cv2.COLOR_RGB2BGR) | |
def isImageSet(self): | |
if type(self.img1) == np.ndarray and type(self.img2) == np.ndarray: | |
# if self.img1 != None and self.img2 != None: | |
return True | |
else: | |
print(f"Error! Images not set!\nImage1Set = {self.img1 != None}, Image1Type = {type(self.img1)}\nImage2Set = {self.img2 != None}, Image2Type = {type(self.img2)}") | |
return False | |
def __changeGrayaxisToRGB(self): | |
if len(self.img1.shape) == 3: | |
if self.img1.shape[2] == 1: | |
self.img1 = cv2.cvtColor(self.img1,cv2.COLOR_GRAY2BGR) | |
else: | |
self.img1 = cv2.cvtColor(self.img1,cv2.COLOR_GRAY2BGR) | |
if len(self.img2.shape) == 3: | |
if self.img2.shape[2] == 1: | |
self.img2 = cv2.cvtColor(self.img2,cv2.COLOR_GRAY2BGR) | |
else: | |
self.img2 = cv2.cvtColor(self.img2,cv2.COLOR_GRAY2BGR) | |
def __convertRGBToLAB(self): | |
self.img1LAB = cv2.cvtColor(self.img1,cv2.COLOR_BGR2LAB) | |
self.img2LAB = cv2.cvtColor(self.img2,cv2.COLOR_BGR2LAB) | |
def __calculateLABColorMeanAndStd(self): | |
img1mean_lst = [] | |
img1std_lst = [] | |
img2mean_lst = [] | |
img2std_lst = [] | |
for c in range(self.img1LAB.shape[2]): | |
img1mean_lst.append(np.mean(self.img1LAB[:, :, c])) | |
std1 = np.std(self.img1LAB[:, :, c]) | |
img2mean_lst.append(np.mean(self.img2LAB[:, :, c])) | |
std2 = np.std(self.img2LAB[:, :, c]) | |
img1std_lst.append(std1 if std1 != 0 else (std2 if std2 != 0 else 1)) | |
img2std_lst.append(std2 if std2 != 0 else 1) | |
return (img1mean_lst, img1std_lst), (img2mean_lst, img2std_lst) | |
def histogramMatching(self): | |
matched = match_histograms(self.img1, self.img2, channel_axis=-1) | |
matched_rgb = cv2.cvtColor(matched.astype(np.uint8), cv2.COLOR_BGR2RGB) | |
return matched_rgb | |
def transferColor(self, funPercent = 1.0): | |
print("Transferring ...") | |
output_img = None | |
if self.isImageSet(): | |
self.__changeGrayaxisToRGB() | |
self.__convertRGBToLAB() | |
(img1mean_lst, img1std_lst), (img2mean_lst, img2std_lst) = self.__calculateLABColorMeanAndStd() | |
img1_trnsfrmd = [] | |
for c in range(self.img1LAB.shape[2]): | |
img1_star = self.img1LAB[:, :, c] - img1mean_lst[c] | |
img1_dash = img1_star * (img2std_lst[c] / (funPercent * img1std_lst[c])) | |
img1_trnsfrmd.append(img1_dash + img2mean_lst[c]) | |
img1_trnsfrmd_arr = np.uint8(np.clip(np.rint(np.array(img1_trnsfrmd)), 0, 255)) | |
img1_trnsfrmd_arr = np.moveaxis(img1_trnsfrmd_arr, 0, -1) | |
output_img = cv2.cvtColor(img1_trnsfrmd_arr,cv2.COLOR_LAB2RGB) | |
return output_img | |
def transferTexture1(self, img1, img2): | |
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0])) | |
# Generate Gaussian pyramid for img1 | |
g1 = img1.copy() | |
gp1 = [g1] | |
for i in range(6): | |
g1 = cv2.pyrDown(g1) | |
gp1.append(g1) | |
# Generate Gaussian pyramid for img2 | |
g2 = img2.copy() | |
gp2 = [g2] | |
for i in range(6): | |
g2 = cv2.pyrDown(g2) | |
gp2.append(g2) | |
# Generate Laplacian Pyramid for img1 | |
lp1 = [gp1[5]] | |
for i in range(5, 0, -1): | |
GE = cv2.pyrUp(gp1[i]) | |
print(GE.shape, gp1[i - 1].shape) | |
GE = cv2.resize(GE, (gp1[i-1].shape[1], gp1[i-1].shape[0])) | |
print(GE.shape, gp1[i - 1].shape) | |
L = cv2.subtract(gp1[i - 1], GE) | |
lp1.append(L) | |
# Generate Laplacian Pyramid for img2 | |
lp2 = [gp2[5]] | |
for i in range(5, 0, -1): | |
GE = cv2.pyrUp(gp2[i]) | |
GE = cv2.resize(GE, (gp2[i-1].shape[1], gp2[i-1].shape[0])) | |
L = cv2.subtract(gp2[i - 1], GE) | |
lp2.append(L) | |
# Now add left and right halves of images in each level | |
LS = [] | |
for l1, l2 in zip(lp1, lp2): | |
rows, cols, dpt = l1.shape | |
ls = np.hstack((l1[:, 0:cols // 2], l2[:, cols // 2:])) | |
LS.append(ls) | |
# Reconstruct the image | |
ls_ = LS[0] | |
for i in range(1, 6): | |
ls_ = cv2.pyrUp(ls_) | |
ls_ = cv2.resize(ls_, (LS[i].shape[1], LS[i].shape[0])) | |
ls_ = cv2.add(ls_, LS[i]) | |
# Convert back to RGB for Gradio to display | |
texture_transferred = cv2.cvtColor(ls_, cv2.COLOR_BGR2RGB) | |
return texture_transferred | |
def transferTexture2(self, img1, img2): | |
img2 = cv2.resize(np.array(img2), (img1.shape[1], img1.shape[0])) | |
# Convert both images to numpy arrays (in BGR format for OpenCV) | |
# img1 = np.array(img1) | |
# img2 = np.array(img2) | |
patch_size = 24 # Patch size in pixels | |
overlap_size = 8 | |
texture_patches = view_as_windows(img2, (patch_size, patch_size, 3), step=patch_size - overlap_size) | |
texture_patches = texture_patches.reshape(-1, patch_size, patch_size, 3) | |
# Create output image | |
output_image = np.zeros_like(img1) | |
# Place patches in the output image by matching overlaps | |
for i in range(0, img1.shape[0] - patch_size + 1, patch_size - overlap_size): | |
for j in range(0, img1.shape[1] - patch_size + 1, patch_size - overlap_size): | |
# Select a random patch to blend (for simplicity) | |
best_patch = texture_patches[np.random.randint(len(texture_patches))] | |
# Blend best patch into output with minimal seams | |
output_image[i:i + patch_size, j:j + patch_size] = best_patch | |
self.blend_patches(output_image, best_patch, i, j, overlap_size, patch_size) | |
return output_image | |
def loadAndTransfer(self, img1, img2, funPercent = 1.0): | |
self.load(img1, img2) | |
color_img1 = self.transferColor(funPercent) | |
color_img2 = self.histogramMatching() | |
return color_img1, color_img2 | |
#return self.transferTexture1(color_img, self.img2) | |
#return self.transferTexture2(color_img, self.img2) |