File size: 5,913 Bytes
657434d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f54ae
657434d
e0f54ae
657434d
 
 
 
 
 
 
 
 
 
 
e0f54ae
657434d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f54ae
657434d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import urllib.request
import fitz
import re
import numpy as np
import tensorflow_hub as hub
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors


def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)


def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text


def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list


def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []

    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks


class SemanticSearch:

    def __init__(self):
        self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
        self.fitted = False

    def fit(self, data, batch=1000, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data, batch=batch)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True

    def __call__(self, text, return_data=True):
        inp_emb = self.use([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]

        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors

    def get_text_embedding(self, texts, batch=1000):
        embeddings = []
        for i in range(0, len(texts), batch):
            text_batch = texts[i:(i+batch)]
            emb_batch = self.use(text_batch)
            embeddings.append(emb_batch)
        embeddings = np.vstack(embeddings)
        return embeddings


recommender = SemanticSearch()
pdf_paths = []  # List to store multiple PDF paths


def load_recommender(paths, start_page=1):
    global recommender, pdf_paths
    pdf_paths = paths
    texts = []
    for path in paths:
        texts.extend(pdf_to_text(path, start_page=start_page))
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender.fit(chunks)
    return 'Corpus Loaded.'


def generate_text(prompt,engine):
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message


def generate_answer(question):
    engine = os.environ('Engine')
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'

    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. " \
              "Cite each reference using [number] notation (every result has this number at the beginning). " \
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects " \
              "with the same name, create separate answers for each. Only include information found in the results and " \
              "don't add any additional information. Make sure the answer is correct and don't output false content. " \
              "If the text does not relate to the query, simply state 'Found Nothing'. Ignore outlier " \
              "search results which have nothing to do with the question. Only answer what is asked. The " \
              "answer should be short and concise.\n\nQuery: {question}\nAnswer: "

    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text(prompt, engine)
    return answer


def question_answer(files, question, secret):
    api_key = os.environ.get('AzureKey')
    url_base = os.environ.get('AzureUrlBase')

    if api_key is None or url_base is None:
        return '[ERROR]: Please provide the Azure API Key and URL Base as environment variables.'

    openai.api_key = api_key
    openai.api_type = "azure"
    openai.api_base = url_base
    openai.api_version = "2022-12-01"

    if files == []:
        return '[ERROR]: Please provide at least one PDF.'

    if secret != os.environ.get('Secret'):
        return '[Error]: Please provide the correct secret'

    else:
        loaded_files = []
        for file in files:
            old_file_name = file.name
            file_name = file.name
            file_name = file_name[:-12] + file_name[-4:]
            os.rename(old_file_name, file_name)
            loaded_files.append(file_name)
        load_recommender(loaded_files)

    if question.strip() == '':
        return '[ERROR]: Question field is empty.'

    return generate_answer(question)


title = 'AzurePDFGPT'
description = "A test platform for indexing PDFs to in order to 'chat' with them. It is hardcoded to the Jaytest and MLSLGPT engine"

with gr.Interface(
    fn=question_answer,
    inputs=[
        gr.File(label='PDFs', file_types=['.pdf'], file_count="multiple"),
        gr.Textbox(label='Question'),
        gr.Textbox(label='Secret')
    ],
    outputs=gr.Textbox(label='Answer'),
    title=title,
    description=description
) as iface:
    iface.launch()