Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
✨ add aggregator
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
- aggregate.py +118 -0
aggregate.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# imports
|
2 |
+
import logging
|
3 |
+
import time
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import GenerationConfig, pipeline
|
7 |
+
|
8 |
+
# Setting up logging
|
9 |
+
logging.basicConfig(
|
10 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
class BatchAggregator:
|
15 |
+
def __init__(
|
16 |
+
self, model_name: str = "pszemraj/bart-large-mnli-dolly_hhrlhf-v1", **kwargs
|
17 |
+
):
|
18 |
+
self.logger = logging.getLogger(__name__)
|
19 |
+
self.model_name = model_name
|
20 |
+
self.logger.info(f"Initializing aggregator with model {model_name}")
|
21 |
+
self.aggregator = pipeline(
|
22 |
+
"text2text-generation",
|
23 |
+
model_name,
|
24 |
+
device=0 if torch.cuda.is_available() else -1,
|
25 |
+
torch_dtype=torch.float32,
|
26 |
+
)
|
27 |
+
|
28 |
+
try:
|
29 |
+
self.aggregator.model = torch.compile(self.aggregator.model)
|
30 |
+
except Exception as e:
|
31 |
+
self.logger.warning(f"Could not compile model with Torch 2.0: {e}")
|
32 |
+
try:
|
33 |
+
self.aggregator.model.generation_config = GenerationConfig.from_pretrained(
|
34 |
+
self.model_name
|
35 |
+
)
|
36 |
+
except Exception as e:
|
37 |
+
self.logger.warning(
|
38 |
+
f"Could not load generation config, using defaults: {e}"
|
39 |
+
)
|
40 |
+
self.aggregator.model.generation_config = GenerationConfig(
|
41 |
+
num_beams=4,
|
42 |
+
early_stopping=True,
|
43 |
+
do_sample=False,
|
44 |
+
min_new_tokens=32,
|
45 |
+
max_new_tokens=192,
|
46 |
+
repetition_penalty=1.1,
|
47 |
+
length_penalty=1.5,
|
48 |
+
no_repeat_ngram_size=4,
|
49 |
+
encoder_no_repeat_ngram_size=5,
|
50 |
+
decoder_start_token_id=0,
|
51 |
+
eos_token_id=1,
|
52 |
+
pad_token_id=0,
|
53 |
+
)
|
54 |
+
|
55 |
+
if "bart" in model_name.lower():
|
56 |
+
self.logger.info("Using BART model, updating generation config")
|
57 |
+
upd = {
|
58 |
+
"num_beams": 8,
|
59 |
+
"repetition_penalty": 1.3,
|
60 |
+
"length_penalty": 1.0,
|
61 |
+
"_from_model_config": False,
|
62 |
+
"max_new_tokens": 256,
|
63 |
+
"min_new_tokens": 32,
|
64 |
+
"no_repeat_ngram_size": 3,
|
65 |
+
"encoder_no_repeat_ngram_size": 6,
|
66 |
+
}
|
67 |
+
self.aggregator.model.generation_config.update(**upd)
|
68 |
+
if self.model_name != "pszemraj/bart-large-mnli-dolly_hhrlhf-v1":
|
69 |
+
self.logger.info("Updating generation config with defaults")
|
70 |
+
self.update_generation_config()
|
71 |
+
self.logger.info(self.aggregator.model.generation_config.to_json_string())
|
72 |
+
|
73 |
+
def update_generation_config(self, **kwargs):
|
74 |
+
self.logger.info(f"Updating generation config with {kwargs}")
|
75 |
+
default = GenerationConfig(
|
76 |
+
num_beams=4,
|
77 |
+
early_stopping=True,
|
78 |
+
do_sample=False,
|
79 |
+
min_new_tokens=32,
|
80 |
+
max_new_tokens=192,
|
81 |
+
repetition_penalty=1.1,
|
82 |
+
length_penalty=1.5,
|
83 |
+
no_repeat_ngram_size=4,
|
84 |
+
encoder_no_repeat_ngram_size=5,
|
85 |
+
decoder_start_token_id=0,
|
86 |
+
eos_token_id=1,
|
87 |
+
pad_token_id=0,
|
88 |
+
).to_dict()
|
89 |
+
self.aggregator.model.generation_config.update(**default)
|
90 |
+
def _replace_pipeline(model_name)
|
91 |
+
def infer_aggregate(
|
92 |
+
self,
|
93 |
+
text_list: list,
|
94 |
+
instruction: str = "Write a comprehensive yet concise summary in paragraph form that pulls together the main points of the following text:",
|
95 |
+
**kwargs,
|
96 |
+
):
|
97 |
+
joined_text = "\n".join(text_list)
|
98 |
+
prompt = f"{instruction}\n\n{joined_text}\n"
|
99 |
+
if kwargs:
|
100 |
+
self.update_generation_config(**kwargs)
|
101 |
+
st = time.perf_counter()
|
102 |
+
self.logger.info(f"Running inference on {len(text_list)} texts")
|
103 |
+
result = self.aggregator(
|
104 |
+
prompt,
|
105 |
+
generation_config=self.aggregator.model.generation_config,
|
106 |
+
)[0]["generated_text"]
|
107 |
+
self.logger.info(f"Done. runtime:\t{round(time.perf_counter() - st, 2)}s")
|
108 |
+
self.logger.info(
|
109 |
+
f"Input tokens:\t{self.count_tokens(prompt)}. Output tokens:\t{self.count_tokens(result)}"
|
110 |
+
)
|
111 |
+
return result
|
112 |
+
|
113 |
+
def count_tokens(self, text: str):
|
114 |
+
return (
|
115 |
+
len(self.aggregator.tokenizer.encode(text, truncation=False, padding=False))
|
116 |
+
if text
|
117 |
+
else 0
|
118 |
+
)
|