Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
✨ add and update utils
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
utils.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
"""
|
2 |
utils.py - Utility functions for the project.
|
3 |
"""
|
4 |
-
|
5 |
import logging
|
|
|
6 |
import re
|
7 |
import subprocess
|
8 |
from collections import defaultdict, deque
|
9 |
-
from datetime import datetime
|
10 |
from itertools import combinations, islice
|
11 |
from pathlib import Path
|
12 |
from typing import List
|
@@ -25,6 +25,86 @@ STOPWORDS = set(
|
|
25 |
)
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def validate_pytorch2(torch_version: str = None):
|
29 |
torch_version = torch.__version__ if torch_version is None else torch_version
|
30 |
|
@@ -46,7 +126,7 @@ def get_timestamp(detailed=False) -> str:
|
|
46 |
)
|
47 |
|
48 |
|
49 |
-
def truncate_word_count(text, max_words=
|
50 |
"""
|
51 |
truncate_word_count - a helper function for the gradio module
|
52 |
Parameters
|
@@ -141,6 +221,42 @@ def textlist2html(text_batches):
|
|
141 |
return text_html_block
|
142 |
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
def extract_keywords(
|
145 |
text: str, num_keywords: int = 3, window_size: int = 5, kw_max_len: int = 20
|
146 |
) -> List[str]:
|
|
|
1 |
"""
|
2 |
utils.py - Utility functions for the project.
|
3 |
"""
|
|
|
4 |
import logging
|
5 |
+
import os
|
6 |
import re
|
7 |
import subprocess
|
8 |
from collections import defaultdict, deque
|
9 |
+
from datetime import datetime, timedelta
|
10 |
from itertools import combinations, islice
|
11 |
from pathlib import Path
|
12 |
from typing import List
|
|
|
25 |
)
|
26 |
|
27 |
|
28 |
+
def remove_stagnant_files(
|
29 |
+
freq: str = "hourly",
|
30 |
+
search_path: str = ".",
|
31 |
+
substring="DocSumm",
|
32 |
+
remove_suffix=".txt",
|
33 |
+
):
|
34 |
+
"""
|
35 |
+
remove_stagnant_files - Remove files that have not been modified in a certain amount of time.
|
36 |
+
|
37 |
+
:param str freq: frequency of file removal, defaults to "hourly"
|
38 |
+
:param str search_path: location to search for files, defaults to "."
|
39 |
+
:param str substring: substring to search for in file names, defaults to "DocSumm"
|
40 |
+
:param str remove_suffix: suffix of files to remove, defaults to ".txt"
|
41 |
+
:raises ValueError: if freq is not one of "hourly", "daily", or "weekly"
|
42 |
+
"""
|
43 |
+
current_time = datetime.now()
|
44 |
+
search_path = Path(search_path)
|
45 |
+
|
46 |
+
if freq == "hourly":
|
47 |
+
time_threshold = current_time - timedelta(hours=1)
|
48 |
+
elif freq == "daily":
|
49 |
+
time_threshold = current_time - timedelta(days=1)
|
50 |
+
elif freq == "weekly":
|
51 |
+
time_threshold = current_time - timedelta(weeks=1)
|
52 |
+
else:
|
53 |
+
raise ValueError(
|
54 |
+
"Invalid frequency. Supported values are 'hourly', 'daily', and 'weekly'."
|
55 |
+
)
|
56 |
+
|
57 |
+
files_to_remove = []
|
58 |
+
potential_files = [
|
59 |
+
f for f in search_path.iterdir() if f.is_file() and f.suffix == remove_suffix
|
60 |
+
]
|
61 |
+
logging.info(f"Found {len(potential_files)} files.")
|
62 |
+
for candidate in potential_files:
|
63 |
+
if (
|
64 |
+
candidate.is_file()
|
65 |
+
and substring in candidate.name
|
66 |
+
and candidate.stat().st_mtime < time_threshold.timestamp()
|
67 |
+
):
|
68 |
+
files_to_remove.append(candidate)
|
69 |
+
logging.debug(f"File {candidate} last modified at {candidate.stat().st_mtime}")
|
70 |
+
logging.info(f"Removing {len(files_to_remove)} files.")
|
71 |
+
for file_path in files_to_remove:
|
72 |
+
file_path.unlink()
|
73 |
+
logging.debug(f"Removed files: {files_to_remove}")
|
74 |
+
|
75 |
+
|
76 |
+
def compare_model_size(model_name: str, threshold: int = 500) -> bool:
|
77 |
+
"""
|
78 |
+
compare_model_size - compare string representations of model size to a threshold
|
79 |
+
|
80 |
+
:param str model_name: the model name to compare
|
81 |
+
:param int threshold: the threshold to compare against in millions, defaults to 500
|
82 |
+
:return: True if the model size is greater than the threshold, False or None otherwise
|
83 |
+
"""
|
84 |
+
pattern = r"(\d+)(M|G|k|b)?" # param regex
|
85 |
+
|
86 |
+
matches = re.findall(pattern, model_name)
|
87 |
+
if not matches:
|
88 |
+
return None
|
89 |
+
|
90 |
+
# Extract the parameter count and unit from the last match
|
91 |
+
parameter_count, unit = matches[-1]
|
92 |
+
|
93 |
+
parameter_count = int(parameter_count) # Convert to an integer
|
94 |
+
|
95 |
+
# Convert to the standard form (M for million, G for billion, k for thousand)
|
96 |
+
if unit == "G" or unit == "b":
|
97 |
+
parameter_count *= 1000
|
98 |
+
elif unit == "M":
|
99 |
+
pass
|
100 |
+
elif unit == "k":
|
101 |
+
parameter_count /= 1000
|
102 |
+
else:
|
103 |
+
return None # Unknown
|
104 |
+
|
105 |
+
return parameter_count > threshold
|
106 |
+
|
107 |
+
|
108 |
def validate_pytorch2(torch_version: str = None):
|
109 |
torch_version = torch.__version__ if torch_version is None else torch_version
|
110 |
|
|
|
126 |
)
|
127 |
|
128 |
|
129 |
+
def truncate_word_count(text, max_words=1024):
|
130 |
"""
|
131 |
truncate_word_count - a helper function for the gradio module
|
132 |
Parameters
|
|
|
221 |
return text_html_block
|
222 |
|
223 |
|
224 |
+
def extract_batches(html_string, pattern=None, flags=None) -> list:
|
225 |
+
"""
|
226 |
+
Extract batches of text from an HTML string.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
html_string (str): The HTML string to extract batches from.
|
230 |
+
pattern (str, optional): The regular expression pattern to use. Defaults to a pattern that matches batches in the format provided.
|
231 |
+
flags (int, optional): The flags to use with the regular expression. Defaults to re.DOTALL.
|
232 |
+
|
233 |
+
Returns:
|
234 |
+
list: A list of dictionaries where each dictionary represents a batch and has 'title' and 'content' keys.
|
235 |
+
"""
|
236 |
+
# Set default pattern if none provided
|
237 |
+
if pattern is None:
|
238 |
+
pattern = r'<h2 style="font-size: 22px; color: #555;">(.*?)</h2>\s*<p style="white-space: pre-line;">(.*?)</p>'
|
239 |
+
|
240 |
+
# Set default flags if none provided
|
241 |
+
if flags is None:
|
242 |
+
flags = re.DOTALL
|
243 |
+
|
244 |
+
try:
|
245 |
+
# Find all matches in the string
|
246 |
+
matches = re.findall(pattern, html_string, flags)
|
247 |
+
|
248 |
+
# Convert matches to a list of dictionaries
|
249 |
+
batches = [
|
250 |
+
{"title": title.strip(), "content": content.strip()}
|
251 |
+
for title, content in matches
|
252 |
+
]
|
253 |
+
|
254 |
+
return batches
|
255 |
+
except re.error as e:
|
256 |
+
logging.error(f"An error occurred while trying to extract batches: {e}")
|
257 |
+
return []
|
258 |
+
|
259 |
+
|
260 |
def extract_keywords(
|
261 |
text: str, num_keywords: int = 3, window_size: int = 5, kw_max_len: int = 20
|
262 |
) -> List[str]:
|