Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
✨ easily customize app
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
app.py
CHANGED
@@ -3,6 +3,13 @@ app.py - the main module for the gradio app
|
|
3 |
|
4 |
Usage:
|
5 |
python app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
"""
|
7 |
import contextlib
|
8 |
import gc
|
@@ -14,9 +21,7 @@ import time
|
|
14 |
from pathlib import Path
|
15 |
|
16 |
os.environ["USE_TORCH"] = "1"
|
17 |
-
os.environ[
|
18 |
-
"TOKENIZERS_PARALLELISM"
|
19 |
-
] = "false" # parallelism on tokenizers is buggy with gradio
|
20 |
|
21 |
logging.basicConfig(
|
22 |
level=logging.INFO,
|
@@ -48,6 +53,10 @@ MODEL_OPTIONS = [
|
|
48 |
"pszemraj/pegasus-x-large-book-summary",
|
49 |
] # models users can choose from
|
50 |
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def predict(
|
53 |
input_text: str,
|
@@ -105,7 +114,11 @@ def proc_submission(
|
|
105 |
length_penalty (float): the length penalty to use
|
106 |
repetition_penalty (float): the repetition penalty to use
|
107 |
no_repeat_ngram_size (int): the no repeat ngram size to use
|
108 |
-
max_input_length (int, optional): the maximum input length to use. Defaults to
|
|
|
|
|
|
|
|
|
109 |
|
110 |
Returns:
|
111 |
str in HTML format, string of the summary, str of score
|
@@ -122,6 +135,9 @@ def proc_submission(
|
|
122 |
"early_stopping": True,
|
123 |
"do_sample": False,
|
124 |
}
|
|
|
|
|
|
|
125 |
st = time.perf_counter()
|
126 |
history = {}
|
127 |
clean_text = clean(input_text, lower=False)
|
@@ -186,7 +202,7 @@ def proc_submission(
|
|
186 |
|
187 |
# save to file
|
188 |
settings["model_name"] = model_name
|
189 |
-
saved_file = saves_summary(_summaries, **settings)
|
190 |
|
191 |
return html, sum_text_out, scores_out, saved_file
|
192 |
|
@@ -211,6 +227,8 @@ def load_single_example_text(
|
|
211 |
text = clean(raw_text, lower=False)
|
212 |
elif full_ex_path.suffix == ".pdf":
|
213 |
logging.info(f"Loading PDF file {full_ex_path}")
|
|
|
|
|
214 |
conversion_stats = convert_PDF_to_Text(
|
215 |
full_ex_path,
|
216 |
ocr_model=ocr_model,
|
@@ -241,12 +259,14 @@ def load_uploaded_file(file_obj, max_pages: int = 20, lower: bool = False) -> st
|
|
241 |
file_path = Path(file_obj.name)
|
242 |
try:
|
243 |
logger.info(f"Loading file:\t{file_path}")
|
244 |
-
if file_path.suffix
|
245 |
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
|
246 |
raw_text = f.read()
|
247 |
text = clean(raw_text, lower=lower)
|
248 |
elif file_path.suffix == ".pdf":
|
249 |
logger.info(f"loading as PDF file {file_path}")
|
|
|
|
|
250 |
conversion_stats = convert_PDF_to_Text(
|
251 |
file_path,
|
252 |
ocr_model=ocr_model,
|
@@ -254,8 +274,8 @@ def load_uploaded_file(file_obj, max_pages: int = 20, lower: bool = False) -> st
|
|
254 |
)
|
255 |
text = conversion_stats["converted_text"]
|
256 |
else:
|
257 |
-
logger.error(f"Unknown file type
|
258 |
-
text = "ERROR - check file - unknown file type"
|
259 |
|
260 |
return text
|
261 |
except Exception as e:
|
@@ -276,7 +296,8 @@ if __name__ == "__main__":
|
|
276 |
)
|
277 |
name_to_path = load_example_filenames(_here / "examples")
|
278 |
logger.info(f"Loaded {len(name_to_path)} examples")
|
279 |
-
|
|
|
280 |
_examples = list(name_to_path.keys())
|
281 |
with demo:
|
282 |
gr.Markdown("# Document Summarization with Long-Document Transformers")
|
@@ -318,6 +339,7 @@ if __name__ == "__main__":
|
|
318 |
with gr.Row():
|
319 |
input_text = gr.Textbox(
|
320 |
lines=4,
|
|
|
321 |
label="Input Text (for summarization)",
|
322 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
323 |
)
|
@@ -389,6 +411,9 @@ if __name__ == "__main__":
|
|
389 |
gr.Markdown(
|
390 |
"- _Update April 2023:_ Additional models fine-tuned on the [PLOS](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) and [ELIFE](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-elife-norm) subsets of the [scientific lay summaries](https://arxiv.org/abs/2210.09932) dataset are available (see dropdown at the top)."
|
391 |
)
|
|
|
|
|
|
|
392 |
gr.Markdown("---")
|
393 |
|
394 |
load_examples_button.click(
|
|
|
3 |
|
4 |
Usage:
|
5 |
python app.py
|
6 |
+
|
7 |
+
Environment Variables:
|
8 |
+
USE_TORCH (str): whether to use torch (1) or not (0)
|
9 |
+
TOKENIZERS_PARALLELISM (str): whether to use parallelism (true) or not (false)
|
10 |
+
Optional Environment Variables:
|
11 |
+
APP_MAX_WORDS (int): the maximum number of words to use for summarization
|
12 |
+
APP_OCR_MAX_PAGES (int): the maximum number of pages to use for OCR
|
13 |
"""
|
14 |
import contextlib
|
15 |
import gc
|
|
|
21 |
from pathlib import Path
|
22 |
|
23 |
os.environ["USE_TORCH"] = "1"
|
24 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
|
|
|
25 |
|
26 |
logging.basicConfig(
|
27 |
level=logging.INFO,
|
|
|
53 |
"pszemraj/pegasus-x-large-book-summary",
|
54 |
] # models users can choose from
|
55 |
|
56 |
+
# if duplicating space,, uncomment this line to adjust the max words
|
57 |
+
# os.environ["APP_MAX_WORDS"] = str(2048) # set the max words to 2048
|
58 |
+
# os.environ["APP_OCR_MAX_PAGES"] = str(40) # set the max pages to 40
|
59 |
+
|
60 |
|
61 |
def predict(
|
62 |
input_text: str,
|
|
|
114 |
length_penalty (float): the length penalty to use
|
115 |
repetition_penalty (float): the repetition penalty to use
|
116 |
no_repeat_ngram_size (int): the no repeat ngram size to use
|
117 |
+
max_input_length (int, optional): the maximum input length to use. Defaults to 4096.
|
118 |
+
|
119 |
+
Note:
|
120 |
+
the max_input_length is set to 4096 by default, but can be changed by setting the
|
121 |
+
environment variable APP_MAX_WORDS to a different value.
|
122 |
|
123 |
Returns:
|
124 |
str in HTML format, string of the summary, str of score
|
|
|
135 |
"early_stopping": True,
|
136 |
"do_sample": False,
|
137 |
}
|
138 |
+
max_input_length = int(os.environ.get("APP_MAX_WORDS", max_input_length))
|
139 |
+
logging.info(f"max_input_length set to: {max_input_length}")
|
140 |
+
|
141 |
st = time.perf_counter()
|
142 |
history = {}
|
143 |
clean_text = clean(input_text, lower=False)
|
|
|
202 |
|
203 |
# save to file
|
204 |
settings["model_name"] = model_name
|
205 |
+
saved_file = saves_summary(summarize_output=_summaries, outpath=None, **settings)
|
206 |
|
207 |
return html, sum_text_out, scores_out, saved_file
|
208 |
|
|
|
227 |
text = clean(raw_text, lower=False)
|
228 |
elif full_ex_path.suffix == ".pdf":
|
229 |
logging.info(f"Loading PDF file {full_ex_path}")
|
230 |
+
max_pages = int(os.environ.get("APP_MAX_PAGES", max_pages))
|
231 |
+
logging.info(f"max_pages set to: {max_pages}")
|
232 |
conversion_stats = convert_PDF_to_Text(
|
233 |
full_ex_path,
|
234 |
ocr_model=ocr_model,
|
|
|
259 |
file_path = Path(file_obj.name)
|
260 |
try:
|
261 |
logger.info(f"Loading file:\t{file_path}")
|
262 |
+
if file_path.suffix in [".txt", ".md"]:
|
263 |
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
|
264 |
raw_text = f.read()
|
265 |
text = clean(raw_text, lower=lower)
|
266 |
elif file_path.suffix == ".pdf":
|
267 |
logger.info(f"loading as PDF file {file_path}")
|
268 |
+
max_pages = int(os.environ.get("APP_MAX_PAGES", max_pages))
|
269 |
+
logger.info(f"max_pages set to: {max_pages}")
|
270 |
conversion_stats = convert_PDF_to_Text(
|
271 |
file_path,
|
272 |
ocr_model=ocr_model,
|
|
|
274 |
)
|
275 |
text = conversion_stats["converted_text"]
|
276 |
else:
|
277 |
+
logger.error(f"Unknown file type:\t{file_path.suffix}")
|
278 |
+
text = "ERROR - check file - unknown file type. PDF, TXT, and MD are supported."
|
279 |
|
280 |
return text
|
281 |
except Exception as e:
|
|
|
296 |
)
|
297 |
name_to_path = load_example_filenames(_here / "examples")
|
298 |
logger.info(f"Loaded {len(name_to_path)} examples")
|
299 |
+
|
300 |
+
demo = gr.Blocks(title="Document Summarization with Long-Document Transformers")
|
301 |
_examples = list(name_to_path.keys())
|
302 |
with demo:
|
303 |
gr.Markdown("# Document Summarization with Long-Document Transformers")
|
|
|
339 |
with gr.Row():
|
340 |
input_text = gr.Textbox(
|
341 |
lines=4,
|
342 |
+
max_lines=12,
|
343 |
label="Input Text (for summarization)",
|
344 |
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
345 |
)
|
|
|
411 |
gr.Markdown(
|
412 |
"- _Update April 2023:_ Additional models fine-tuned on the [PLOS](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) and [ELIFE](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-elife-norm) subsets of the [scientific lay summaries](https://arxiv.org/abs/2210.09932) dataset are available (see dropdown at the top)."
|
413 |
)
|
414 |
+
gr.Markdown(
|
415 |
+
"Adjust the max input words & max PDF pages for OCR by duplicating this space and [setting the environment variables](https://huggingface.co/docs/hub/spaces-overview#managing-secrets) `APP_MAX_WORDS` and `APP_OCR_MAX_PAGES` to the desired integer values."
|
416 |
+
)
|
417 |
gr.Markdown("---")
|
418 |
|
419 |
load_examples_button.click(
|