Spaces:
Runtime error
Runtime error
π¨
Browse filesSigned-off-by: peter szemraj <peterszemraj@gmail.com>
app.py
CHANGED
@@ -75,7 +75,7 @@ def proc_submission(
|
|
75 |
msg = f"""
|
76 |
<div style="background-color: #FFA500; color: white; padding: 20px;">
|
77 |
<h3>Warning</h3>
|
78 |
-
<p>Input text was truncated to {max_input_length} words.
|
79 |
</div>
|
80 |
"""
|
81 |
logging.warning(msg)
|
@@ -188,7 +188,9 @@ if __name__ == "__main__":
|
|
188 |
|
189 |
logging.info("Loading summ models")
|
190 |
with contextlib.redirect_stdout(None):
|
191 |
-
model, tokenizer = load_model_and_tokenizer(
|
|
|
|
|
192 |
model_sm, tokenizer_sm = load_model_and_tokenizer(
|
193 |
"pszemraj/long-t5-tglobal-base-16384-book-summary"
|
194 |
)
|
@@ -240,9 +242,9 @@ if __name__ == "__main__":
|
|
240 |
)
|
241 |
with gr.Row():
|
242 |
input_text = gr.Textbox(
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
)
|
247 |
with gr.Column(min_width=100, scale=0.5):
|
248 |
load_examples_button = gr.Button(
|
|
|
75 |
msg = f"""
|
76 |
<div style="background-color: #FFA500; color: white; padding: 20px;">
|
77 |
<h3>Warning</h3>
|
78 |
+
<p>Input text was truncated to {max_input_length} words. That's about {100*max_input_length/len(input_wc):.2f}% of the submission.</p>
|
79 |
</div>
|
80 |
"""
|
81 |
logging.warning(msg)
|
|
|
188 |
|
189 |
logging.info("Loading summ models")
|
190 |
with contextlib.redirect_stdout(None):
|
191 |
+
model, tokenizer = load_model_and_tokenizer(
|
192 |
+
"pszemraj/pegasus-x-large-book-summary"
|
193 |
+
)
|
194 |
model_sm, tokenizer_sm = load_model_and_tokenizer(
|
195 |
"pszemraj/long-t5-tglobal-base-16384-book-summary"
|
196 |
)
|
|
|
242 |
)
|
243 |
with gr.Row():
|
244 |
input_text = gr.Textbox(
|
245 |
+
lines=4,
|
246 |
+
label="Input Text (for summarization)",
|
247 |
+
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
|
248 |
)
|
249 |
with gr.Column(min_width=100, scale=0.5):
|
250 |
load_examples_button = gr.Button(
|
utils.py
CHANGED
@@ -8,6 +8,7 @@ from pathlib import Path
|
|
8 |
from natsort import natsorted
|
9 |
import subprocess
|
10 |
|
|
|
11 |
def truncate_word_count(text, max_words=512):
|
12 |
"""
|
13 |
truncate_word_count - a helper function for the gradio module
|
@@ -40,7 +41,9 @@ def load_examples(src, filetypes=[".txt", ".pdf"]):
|
|
40 |
src = Path(src)
|
41 |
src.mkdir(exist_ok=True)
|
42 |
|
43 |
-
pdf_url =
|
|
|
|
|
44 |
subprocess.run(["wget", pdf_url, "-O", src / "all_you_need_is_attention.pdf"])
|
45 |
examples = [f for f in src.iterdir() if f.suffix in filetypes]
|
46 |
examples = natsorted(examples)
|
|
|
8 |
from natsort import natsorted
|
9 |
import subprocess
|
10 |
|
11 |
+
|
12 |
def truncate_word_count(text, max_words=512):
|
13 |
"""
|
14 |
truncate_word_count - a helper function for the gradio module
|
|
|
41 |
src = Path(src)
|
42 |
src.mkdir(exist_ok=True)
|
43 |
|
44 |
+
pdf_url = (
|
45 |
+
"https://www.dropbox.com/s/y92xy7o5qb88yij/all_you_need_is_attention.pdf?dl=1"
|
46 |
+
)
|
47 |
subprocess.run(["wget", pdf_url, "-O", src / "all_you_need_is_attention.pdf"])
|
48 |
examples = [f for f in src.iterdir() if f.suffix in filetypes]
|
49 |
examples = natsorted(examples)
|