pszemraj's picture
Duplicate from joaogante/transformers_streaming
09d15e8
raw
history blame
3.66 kB
from threading import Thread
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TextIteratorStreamer
model_id = "declare-lab/flan-alpaca-large"
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on device:", torch_device)
print("CPU threads:", torch.get_num_threads())
if torch_device == "cuda":
model = AutoModelForSeq2SeqLM.from_pretrained(model_id, load_in_8bit=True, device_map="auto")
else:
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
def run_generation(user_text, top_p, temperature, top_k, max_new_tokens):
# Get the model and tokenizer, and tokenize the user text.
model_inputs = tokenizer([user_text], return_tensors="pt").to(torch_device)
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread.
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=float(temperature),
top_k=top_k
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Pull the generated text from the streamer, and update the model output.
model_output = ""
for new_text in streamer:
model_output += new_text
yield model_output
return model_output
def reset_textbox():
return gr.update(value='')
with gr.Blocks() as demo:
duplicate_link = "https://huggingface.co/spaces/joaogante/transformers_streaming?duplicate=true"
gr.Markdown(
"# 🤗 Transformers 🔥Streaming🔥 on Gradio\n"
"This demo showcases the use of the "
"[streaming feature](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming) "
"of 🤗 Transformers with Gradio to generate text in real-time. It uses "
f"[{model_id}](https://huggingface.co/{model_id}) and the Spaces free compute tier.\n\n"
f"Feel free to [duplicate this Space]({duplicate_link}) to try your own models or use this space as a "
"template! 💛"
)
with gr.Row():
with gr.Column(scale=4):
user_text = gr.Textbox(
placeholder="Write an email about an alpaca that likes flan",
label="User input"
)
model_output = gr.Textbox(label="Model output", lines=10, interactive=False)
button_submit = gr.Button(value="Submit")
with gr.Column(scale=1):
max_new_tokens = gr.Slider(
minimum=1, maximum=1000, value=250, step=1, interactive=True, label="Max New Tokens",
)
top_p = gr.Slider(
minimum=0.05, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)",
)
top_k = gr.Slider(
minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k",
)
temperature = gr.Slider(
minimum=0.1, maximum=5.0, value=0.8, step=0.1, interactive=True, label="Temperature",
)
user_text.submit(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
button_submit.click(run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output)
demo.queue(max_size=32).launch(enable_queue=True)