Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 10,144 Bytes
fe0e9af 53cfd2d 01d78f2 fe0e9af 01d78f2 fe0e9af 01d78f2 fe0e9af 66e7228 fe0e9af 98a3ea7 fe0e9af 9b3e02d fe0e9af 7a2e137 fe0e9af 4dc1508 fe0e9af aa3c57c fe0e9af aa3c57c b9e8529 3247bd6 fe0e9af 53cfd2d fe0e9af 98a3ea7 fe0e9af 01d78f2 fe0e9af f4f4797 8dbbc84 fe0e9af f4f4797 01d78f2 fe0e9af f4f4797 98a3ea7 66e7228 ecba037 3b66adc 01d78f2 3b66adc fe0e9af 42e4d6f 01d78f2 42e4d6f b1e0e58 53cfd2d 01d78f2 53cfd2d 01d78f2 fe0e9af 01d78f2 fe0e9af edb05fc 4dc1508 f8734a4 4dc1508 11da24b 4dc1508 f8734a4 4dc1508 f8734a4 4dc1508 f8734a4 4dc1508 66e7228 edb05fc fe0e9af 66e7228 98a3ea7 01d78f2 d7c315a 01d78f2 4dc1508 01d78f2 4dc1508 01d78f2 4dc1508 01d78f2 fe0e9af 01d78f2 fe0e9af 01d78f2 4dc1508 01d78f2 4dc1508 01d78f2 4dc1508 cf8b2ce 4dc1508 edb05fc 01d78f2 1a7303a 875f311 01d78f2 4dc1508 01d78f2 1a7303a 875f311 01d78f2 0f6a079 01d78f2 1a7303a 01d78f2 4dc1508 11da24b 4dc1508 01d78f2 571c966 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import logging
import time
from pathlib import Path
import gradio as gr
import nltk
from cleantext import clean
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
from utils import load_example_filenames, truncate_word_count
_here = Path(__file__).parent
nltk.download("stopwords") # TODO=find where this requirement originates from
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
def proc_submission(
input_text: str,
model_size: str,
num_beams,
token_batch_length,
length_penalty,
repetition_penalty,
no_repeat_ngram_size,
max_input_length: int = 768,
):
"""
proc_submission - a helper function for the gradio module to process submissions
Args:
input_text (str): the input text to summarize
model_size (str): the size of the model to use
num_beams (int): the number of beams to use
token_batch_length (int): the length of the token batches to use
length_penalty (float): the length penalty to use
repetition_penalty (float): the repetition penalty to use
no_repeat_ngram_size (int): the no repeat ngram size to use
max_input_length (int, optional): the maximum input length to use. Defaults to 768.
Returns:
str in HTML format, string of the summary, str of score
"""
settings = {
"length_penalty": float(length_penalty),
"repetition_penalty": float(repetition_penalty),
"no_repeat_ngram_size": int(no_repeat_ngram_size),
"encoder_no_repeat_ngram_size": 4,
"num_beams": int(num_beams),
"min_length": 4,
"max_length": int(token_batch_length // 4),
"early_stopping": True,
"do_sample": False,
}
st = time.perf_counter()
history = {}
clean_text = clean(input_text, lower=False)
max_input_length = 1024 if model_size == "base" else max_input_length
processed = truncate_word_count(clean_text, max_input_length)
if processed["was_truncated"]:
tr_in = processed["truncated_text"]
msg = f"Input text was truncated to {max_input_length} words (based on whitespace)"
logging.warning(msg)
history["WARNING"] = msg
else:
tr_in = input_text
msg = None
_summaries = summarize_via_tokenbatches(
tr_in,
model_sm if model_size == "base" else model,
tokenizer_sm if model_size == "base" else tokenizer,
batch_length=token_batch_length,
**settings,
)
sum_text = [f"Section {i}: " + s["summary"][0] for i, s in enumerate(_summaries)]
sum_scores = [
f" - Section {i}: {round(s['summary_score'],4)}"
for i, s in enumerate(_summaries)
]
sum_text_out = "\n".join(sum_text)
history["Summary Scores"] = "<br><br>"
scores_out = "\n".join(sum_scores)
rt = round((time.perf_counter() - st) / 60, 2)
print(f"Runtime: {rt} minutes")
html = ""
html += f"<p>Runtime: {rt} minutes on CPU</p>"
if msg is not None:
html += f"<h2>WARNING:</h2><hr><b>{msg}</b><br><br>"
html += ""
return html, sum_text_out, scores_out
def load_single_example_text(
example_path: str or Path,
):
"""
load_single_example - a helper function for the gradio module to load examples
Returns:
list of str, the examples
"""
global name_to_path
full_ex_path = name_to_path[example_path]
full_ex_path = Path(full_ex_path)
# load the examples into a list
with open(full_ex_path, "r", encoding="utf-8", errors="ignore") as f:
raw_text = f.read()
text = clean(raw_text, lower=False)
return text
def load_uploaded_file(file_obj):
"""
load_uploaded_file - process an uploaded file
Args:
file_obj (POTENTIALLY list): Gradio file object inside a list
Returns:
str, the uploaded file contents
"""
# file_path = Path(file_obj[0].name)
# check if mysterious file object is a list
if isinstance(file_obj, list):
file_obj = file_obj[0]
file_path = Path(file_obj.name)
try:
with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
raw_text = f.read()
text = clean(raw_text, lower=False)
return text
except Exception as e:
logging.info(f"Trying to load file with path {file_path}, error: {e}")
return "Error: Could not read file. Ensure that it is a valid text file with encoding UTF-8."
if __name__ == "__main__":
model, tokenizer = load_model_and_tokenizer("pszemraj/led-large-book-summary")
model_sm, tokenizer_sm = load_model_and_tokenizer("pszemraj/led-base-book-summary")
name_to_path = load_example_filenames(_here / "examples")
logging.info(f"Loaded {len(name_to_path)} examples")
demo = gr.Blocks()
with demo:
gr.Markdown("# Long-Form Summarization: LED & BookSum")
gr.Markdown(
"A simple demo using a fine-tuned LED model to summarize long-form text. See [model card](https://huggingface.co/pszemraj/led-large-book-summary) for a notebook with GPU inference (much faster) on Colab."
)
with gr.Column():
gr.Markdown("## Load Inputs & Select Parameters")
gr.Markdown(
"Enter text below in the text area. The text will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). Optionally load an example from the list below or upload a file."
)
model_size = gr.Radio(
choices=["base", "large"], label="model size", value="large"
)
num_beams = gr.Radio(
choices=[2, 3, 4],
label="num beams",
value=2,
)
token_batch_length = gr.Radio(
choices=[512, 768, 1024],
label="token batch length",
value=512,
)
length_penalty = gr.inputs.Slider(
minimum=0.5, maximum=1.0, label="length penalty", default=0.7, step=0.05
)
repetition_penalty = gr.inputs.Slider(
minimum=1.0,
maximum=5.0,
label="repetition penalty",
default=3.5,
step=0.1,
)
no_repeat_ngram_size = gr.Radio(
choices=[2, 3, 4],
label="no repeat ngram size",
value=3,
)
example_name = gr.Dropdown(
list(name_to_path.keys()),
label="Choose an Example",
)
load_examples_button = gr.Button(
"Load Example",
)
input_text = gr.Textbox(
lines=6,
label="input text",
placeholder="Enter text to summarize, the text will be cleaned and truncated on Spaces. Narrative, academic (both papers and lecture transcription), and article text work well. May take a bit to generate depending on the input text :)",
)
gr.Markdown("Upload your own file:")
uploaded_file = gr.File(
label="Upload a text file",
file_count="single",
type="file",
)
load_file_button = gr.Button("Load Uploaded File")
gr.Markdown("---")
with gr.Column():
gr.Markdown("## Generate Summary")
gr.Markdown(
"Summary generation should take approximately 1-2 minutes for most settings."
)
summarize_button = gr.Button("Summarize!")
output_text = gr.HTML("<p><em>Output will appear below:</em></p>")
gr.Markdown("### Summary Output")
summary_text = gr.Textbox(
label="Summary", placeholder="The generated summary will appear here"
)
gr.Markdown(
"The summary scores can be thought of as representing the quality of the summary. less-negative numbers (closer to 0) are better:"
)
summary_scores = gr.Textbox(
label="Summary Scores", placeholder="Summary scores will appear here"
)
gr.Markdown("---")
with gr.Column():
gr.Markdown("## About the Model")
gr.Markdown(
"- [This model](https://huggingface.co/pszemraj/led-large-book-summary) is a fine-tuned checkpoint of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the [BookSum dataset](https://arxiv.org/abs/2105.08209).The goal was to create a model that can generalize well and is useful in summarizing lots of text in academic and daily usage."
)
gr.Markdown(
"- The two most important parameters-empirically-are the `num_beams` and `token_batch_length`. However, increasing these will also increase the amount of time it takes to generate a summary. The `length_penalty` and `repetition_penalty` parameters are also important for the model to generate good summaries."
)
gr.Markdown(
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial."
)
gr.Markdown("---")
load_examples_button.click(
fn=load_single_example_text, inputs=[example_name], outputs=[input_text]
)
load_file_button.click(
fn=load_uploaded_file, inputs=uploaded_file, outputs=[input_text]
)
summarize_button.click(
fn=proc_submission,
inputs=[
input_text,
model_size,
num_beams,
token_batch_length,
length_penalty,
repetition_penalty,
no_repeat_ngram_size,
],
outputs=[output_text, summary_text, summary_scores],
)
demo.launch(enable_queue=True, share=True)
|