Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Peter
commited on
Commit
•
4a607b7
1
Parent(s):
588689f
:sparkles: add summarization fns
Browse files- summarize.py +126 -0
summarize.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm.auto import tqdm
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
|
5 |
+
def load_model_and_tokenizer(model_name):
|
6 |
+
"""
|
7 |
+
load_model_and_tokenizer - a function that loads a model and tokenizer from huggingface
|
8 |
+
|
9 |
+
Args:
|
10 |
+
model_name (str): the name of the model to load
|
11 |
+
Returns:
|
12 |
+
AutoModelForSeq2SeqLM: the model
|
13 |
+
AutoTokenizer: the tokenizer
|
14 |
+
"""
|
15 |
+
|
16 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
17 |
+
model_name,
|
18 |
+
use_cache=False,
|
19 |
+
)
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
21 |
+
model = model.to("cuda") if torch.cuda.is_available() else model
|
22 |
+
return model, tokenizer
|
23 |
+
|
24 |
+
def summarize_and_score(ids, mask, model, tokenizer, **kwargs):
|
25 |
+
"""
|
26 |
+
summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary
|
27 |
+
|
28 |
+
Args:
|
29 |
+
ids (): the batch of ids
|
30 |
+
mask (): the attention mask for the batch
|
31 |
+
model (): the model to use for summarization
|
32 |
+
tokenizer (): the tokenizer to use for summarization
|
33 |
+
|
34 |
+
Returns:
|
35 |
+
str: the summary of the batch
|
36 |
+
"""
|
37 |
+
|
38 |
+
|
39 |
+
ids = ids[None, :]
|
40 |
+
mask = mask[None, :]
|
41 |
+
|
42 |
+
input_ids = ids.to("cuda") if torch.cuda.is_available() else ids
|
43 |
+
attention_mask = mask.to("cuda") if torch.cuda.is_available() else mask
|
44 |
+
|
45 |
+
|
46 |
+
attention_mask = mask.to("cuda")
|
47 |
+
global_attention_mask = torch.zeros_like(attention_mask)
|
48 |
+
# put global attention on <s> token
|
49 |
+
global_attention_mask[:, 0] = 1
|
50 |
+
|
51 |
+
summary_pred_ids = model.generate(
|
52 |
+
input_ids,
|
53 |
+
attention_mask=attention_mask,
|
54 |
+
global_attention_mask=global_attention_mask,
|
55 |
+
output_scores=True,
|
56 |
+
return_dict_in_generate=True,
|
57 |
+
**kwargs
|
58 |
+
)
|
59 |
+
summary = tokenizer.batch_decode(
|
60 |
+
summary_pred_ids.sequences,
|
61 |
+
skip_special_tokens=True,
|
62 |
+
remove_invalid_values=True,
|
63 |
+
)
|
64 |
+
score = round(summary_pred_ids.sequences_scores.cpu().numpy()[0], 4)
|
65 |
+
|
66 |
+
return summary, score
|
67 |
+
|
68 |
+
def summarize_via_tokenbatches(
|
69 |
+
input_text:str,
|
70 |
+
model, tokenizer,
|
71 |
+
batch_length=2048,
|
72 |
+
batch_stride=16,
|
73 |
+
**kwargs,
|
74 |
+
):
|
75 |
+
"""
|
76 |
+
summarize_via_tokenbatches - a function that takes a string and returns a summary
|
77 |
+
|
78 |
+
Args:
|
79 |
+
input_text (str): the text to summarize
|
80 |
+
model (): the model to use for summarization
|
81 |
+
tokenizer (): the tokenizer to use for summarization
|
82 |
+
batch_length (int, optional): the length of each batch. Defaults to 2048.
|
83 |
+
batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
str: the summary
|
87 |
+
"""
|
88 |
+
|
89 |
+
encoded_input = tokenizer(
|
90 |
+
input_text,
|
91 |
+
padding='max_length',
|
92 |
+
truncation=True,
|
93 |
+
max_length=batch_length,
|
94 |
+
stride=batch_stride,
|
95 |
+
return_overflowing_tokens=True,
|
96 |
+
add_special_tokens =False,
|
97 |
+
return_tensors='pt',
|
98 |
+
)
|
99 |
+
|
100 |
+
in_id_arr, att_arr = encoded_input.input_ids, encoded_input.attention_mask
|
101 |
+
gen_summaries = []
|
102 |
+
|
103 |
+
pbar = tqdm(total=len(in_id_arr))
|
104 |
+
|
105 |
+
for _id, _mask in zip(in_id_arr, att_arr):
|
106 |
+
|
107 |
+
result, score = summarize_and_score(
|
108 |
+
ids=_id,
|
109 |
+
mask=_mask,
|
110 |
+
model=model,
|
111 |
+
tokenizer=tokenizer,
|
112 |
+
**kwargs,
|
113 |
+
)
|
114 |
+
score = round(float(score),4)
|
115 |
+
_sum = {
|
116 |
+
"input_tokens":_id,
|
117 |
+
"summary":result,
|
118 |
+
"summary_score":score,
|
119 |
+
}
|
120 |
+
gen_summaries.append(_sum)
|
121 |
+
print(f"\t{result[0]}\nScore:\t{score}")
|
122 |
+
pbar.update()
|
123 |
+
|
124 |
+
pbar.close()
|
125 |
+
|
126 |
+
return gen_summaries
|