Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Peter
commited on
Commit
·
c0a9b19
1
Parent(s):
b2df366
:truck: move functions
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import nltk
|
|
7 |
from cleantext import clean
|
8 |
|
9 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
|
|
10 |
|
11 |
_here = Path(__file__).parent
|
12 |
|
@@ -18,27 +19,6 @@ transformers.logging.set_verbosity_error()
|
|
18 |
logging.basicConfig()
|
19 |
|
20 |
|
21 |
-
def truncate_word_count(text, max_words=512):
|
22 |
-
"""
|
23 |
-
truncate_word_count - a helper function for the gradio module
|
24 |
-
Parameters
|
25 |
-
----------
|
26 |
-
text : str, required, the text to be processed
|
27 |
-
max_words : int, optional, the maximum number of words, default=512
|
28 |
-
Returns
|
29 |
-
-------
|
30 |
-
dict, the text and whether it was truncated
|
31 |
-
"""
|
32 |
-
# split on whitespace with regex
|
33 |
-
words = re.split(r"\s+", text)
|
34 |
-
processed = {}
|
35 |
-
if len(words) > max_words:
|
36 |
-
processed["was_truncated"] = True
|
37 |
-
processed["truncated_text"] = " ".join(words[:max_words])
|
38 |
-
else:
|
39 |
-
processed["was_truncated"] = False
|
40 |
-
processed["truncated_text"] = text
|
41 |
-
return processed
|
42 |
|
43 |
|
44 |
def proc_submission(
|
@@ -117,23 +97,6 @@ def proc_submission(
|
|
117 |
return html
|
118 |
|
119 |
|
120 |
-
def load_examples(examples_dir="examples"):
|
121 |
-
"""
|
122 |
-
load_examples - a helper function for the gradio module to load examples
|
123 |
-
Returns:
|
124 |
-
list of str, the examples
|
125 |
-
"""
|
126 |
-
src = _here / examples_dir
|
127 |
-
src.mkdir(exist_ok=True)
|
128 |
-
examples = [f for f in src.glob("*.txt")]
|
129 |
-
# load the examples into a list
|
130 |
-
text_examples = []
|
131 |
-
for example in examples:
|
132 |
-
with open(example, "r") as f:
|
133 |
-
text = f.read()
|
134 |
-
text_examples.append([text, "large", 2, 512, 0.7, 3.5, 3])
|
135 |
-
|
136 |
-
return text_examples
|
137 |
|
138 |
|
139 |
if __name__ == "__main__":
|
@@ -183,6 +146,6 @@ if __name__ == "__main__":
|
|
183 |
title=title,
|
184 |
description=description,
|
185 |
article="The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial.",
|
186 |
-
examples=load_examples(),
|
187 |
cache_examples=True,
|
188 |
).launch()
|
|
|
7 |
from cleantext import clean
|
8 |
|
9 |
from summarize import load_model_and_tokenizer, summarize_via_tokenbatches
|
10 |
+
from utils import load_examples, truncate_word_count
|
11 |
|
12 |
_here = Path(__file__).parent
|
13 |
|
|
|
19 |
logging.basicConfig()
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
|
24 |
def proc_submission(
|
|
|
97 |
return html
|
98 |
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
|
102 |
if __name__ == "__main__":
|
|
|
146 |
title=title,
|
147 |
description=description,
|
148 |
article="The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial.",
|
149 |
+
examples=load_examples(_here / "examples"),
|
150 |
cache_examples=True,
|
151 |
).launch()
|
utils.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
utils.py - Utility functions for the project.
|
3 |
+
"""
|
4 |
+
|
5 |
+
|
6 |
+
from pathlib import Path
|
7 |
+
import re
|
8 |
+
|
9 |
+
|
10 |
+
def truncate_word_count(text, max_words=512):
|
11 |
+
"""
|
12 |
+
truncate_word_count - a helper function for the gradio module
|
13 |
+
Parameters
|
14 |
+
----------
|
15 |
+
text : str, required, the text to be processed
|
16 |
+
max_words : int, optional, the maximum number of words, default=512
|
17 |
+
Returns
|
18 |
+
-------
|
19 |
+
dict, the text and whether it was truncated
|
20 |
+
"""
|
21 |
+
# split on whitespace with regex
|
22 |
+
words = re.split(r"\s+", text)
|
23 |
+
processed = {}
|
24 |
+
if len(words) > max_words:
|
25 |
+
processed["was_truncated"] = True
|
26 |
+
processed["truncated_text"] = " ".join(words[:max_words])
|
27 |
+
else:
|
28 |
+
processed["was_truncated"] = False
|
29 |
+
processed["truncated_text"] = text
|
30 |
+
return processed
|
31 |
+
|
32 |
+
|
33 |
+
def load_examples(src):
|
34 |
+
"""
|
35 |
+
load_examples - a helper function for the gradio module to load examples
|
36 |
+
Returns:
|
37 |
+
list of str, the examples
|
38 |
+
"""
|
39 |
+
src = Path(src)
|
40 |
+
src.mkdir(exist_ok=True)
|
41 |
+
examples = [f for f in src.glob("*.txt")]
|
42 |
+
# load the examples into a list
|
43 |
+
text_examples = []
|
44 |
+
for example in examples:
|
45 |
+
with open(example, "r") as f:
|
46 |
+
text = f.read()
|
47 |
+
text_examples.append([text, "large", 2, 512, 0.7, 3.5, 3])
|
48 |
+
|
49 |
+
return text_examples
|