Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
update text
Browse files
app.py
CHANGED
@@ -40,7 +40,7 @@ def proc_submission(
|
|
40 |
token_batch_length (int): the length of the token batches to use
|
41 |
length_penalty (float): the length penalty to use
|
42 |
repetition_penalty (float): the repetition penalty to use
|
43 |
-
no_repeat_ngram_size (int): the no
|
44 |
max_input_length (int, optional): the maximum input length to use. Defaults to 1024.
|
45 |
|
46 |
Returns:
|
@@ -166,13 +166,13 @@ if __name__ == "__main__":
|
|
166 |
|
167 |
gr.Markdown("# Long-Form Summarization: LED & BookSum")
|
168 |
gr.Markdown(
|
169 |
-
"
|
170 |
)
|
171 |
with gr.Column():
|
172 |
|
173 |
gr.Markdown("## Load Inputs & Select Parameters")
|
174 |
gr.Markdown(
|
175 |
-
"Enter
|
176 |
)
|
177 |
with gr.Row():
|
178 |
model_size = gr.Radio(
|
@@ -183,7 +183,7 @@ if __name__ == "__main__":
|
|
183 |
label="Beam Search: # of Beams",
|
184 |
value=2,
|
185 |
)
|
186 |
-
gr.Markdown("Load
|
187 |
with gr.Row():
|
188 |
example_name = gr.Dropdown(
|
189 |
_examples,
|
@@ -270,7 +270,7 @@ if __name__ == "__main__":
|
|
270 |
"- The two most important parameters-empirically-are the `num_beams` and `token_batch_length`. "
|
271 |
)
|
272 |
gr.Markdown(
|
273 |
-
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a notebook for a tutorial."
|
274 |
)
|
275 |
gr.Markdown("---")
|
276 |
|
|
|
40 |
token_batch_length (int): the length of the token batches to use
|
41 |
length_penalty (float): the length penalty to use
|
42 |
repetition_penalty (float): the repetition penalty to use
|
43 |
+
no_repeat_ngram_size (int): the no-repeat ngram size to use
|
44 |
max_input_length (int, optional): the maximum input length to use. Defaults to 1024.
|
45 |
|
46 |
Returns:
|
|
|
166 |
|
167 |
gr.Markdown("# Long-Form Summarization: LED & BookSum")
|
168 |
gr.Markdown(
|
169 |
+
"LED models ([model card](https://huggingface.co/pszemraj/led-large-book-summary)) fine-tuned to summarize long-form text. A [space with other models can be found here](https://huggingface.co/spaces/pszemraj/document-summarization)"
|
170 |
)
|
171 |
with gr.Column():
|
172 |
|
173 |
gr.Markdown("## Load Inputs & Select Parameters")
|
174 |
gr.Markdown(
|
175 |
+
"Enter or upload text below, and it will be summarized [using the selected parameters](https://huggingface.co/blog/how-to-generate). "
|
176 |
)
|
177 |
with gr.Row():
|
178 |
model_size = gr.Radio(
|
|
|
183 |
label="Beam Search: # of Beams",
|
184 |
value=2,
|
185 |
)
|
186 |
+
gr.Markdown("Load a a .txt - example or your own (_You may find [this OCR space](https://huggingface.co/spaces/pszemraj/pdf-ocr) useful_)")
|
187 |
with gr.Row():
|
188 |
example_name = gr.Dropdown(
|
189 |
_examples,
|
|
|
270 |
"- The two most important parameters-empirically-are the `num_beams` and `token_batch_length`. "
|
271 |
)
|
272 |
gr.Markdown(
|
273 |
+
"- The model can be used with tag [pszemraj/led-large-book-summary](https://huggingface.co/pszemraj/led-large-book-summary). See the model card for details on usage & a Colab notebook for a tutorial."
|
274 |
)
|
275 |
gr.Markdown("---")
|
276 |
|