Spaces:
Sleeping
Sleeping
import torch # type: ignore | |
from transformers import pipeline # type: ignore | |
import gradio as gr # type: ignore | |
from dotenv import load_dotenv # type: ignore | |
import os | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
load_dotenv() | |
task = 'text-classification' | |
model = 'SamLowe/roberta-base-go_emotions' | |
gitHubLink = 'https://github.com/pulkit-singhall' | |
linkedInLink = 'https://www.linkedin.com/in/pulkit-singhal-a8113822a/' | |
pipe = pipeline(task, model, device=device, framework='pt') | |
def classify_text(text, top_results): | |
result = pipe(text, top_k = top_results) # array of dict | |
output = result[0]['label'] | |
output = output[:1].upper() + output[1:] | |
for i in range(1,len(result)): | |
label = result[i]['label'] | |
label = label[:1].upper() + label[1:] | |
output = '\n'.join([output, label]) | |
return output | |
with gr.Blocks() as app: | |
gr.Markdown(value = 'Get emotions from any textual sentence...', height = 28) | |
with gr.Row(): | |
with gr.Column(): | |
sentence = gr.Textbox(label="English Sentence Here") | |
slider = gr.Slider( | |
label = 'Top Results you want', value = 1, | |
minimum = 1, maximum = 10, step = 1) | |
with gr.Row(): | |
clear_btn = gr.ClearButton(components = [sentence], variant = 'secondary') | |
classify_btn = gr.Button(value="Submit", variant = 'primary') | |
with gr.Column(): | |
result = gr.Textbox(label="Required Emotions") | |
classify_btn.click(classify_text, inputs=[sentence, slider], outputs=[result]) | |
examples = gr.Examples(examples=["That movie was amazing but I did not like the actors.", | |
"Helen is a good swimmer.", | |
'What do you think about Elon Musk and his accomplishments?', | |
'Today was a horrible day'], | |
inputs=[sentence]) | |
gr.Markdown(value = f'Check out my [GitHub]({gitHubLink}) and [LinkedIn]({linkedInLink})', | |
height = 28) | |
app.launch(share = True) |