pulkitsinghall's picture
Create app.py
e14456f verified
import torch # type: ignore
from transformers import pipeline # type: ignore
import gradio as gr # type: ignore
from dotenv import load_dotenv # type: ignore
import os
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
load_dotenv()
task = 'text-classification'
model = 'SamLowe/roberta-base-go_emotions'
gitHubLink = 'https://github.com/pulkit-singhall'
linkedInLink = 'https://www.linkedin.com/in/pulkit-singhal-a8113822a/'
pipe = pipeline(task, model, device=device, framework='pt')
def classify_text(text, top_results):
result = pipe(text, top_k = top_results) # array of dict
output = result[0]['label']
output = output[:1].upper() + output[1:]
for i in range(1,len(result)):
label = result[i]['label']
label = label[:1].upper() + label[1:]
output = '\n'.join([output, label])
return output
with gr.Blocks() as app:
gr.Markdown(value = 'Get emotions from any textual sentence...', height = 28)
with gr.Row():
with gr.Column():
sentence = gr.Textbox(label="English Sentence Here")
slider = gr.Slider(
label = 'Top Results you want', value = 1,
minimum = 1, maximum = 10, step = 1)
with gr.Row():
clear_btn = gr.ClearButton(components = [sentence], variant = 'secondary')
classify_btn = gr.Button(value="Submit", variant = 'primary')
with gr.Column():
result = gr.Textbox(label="Required Emotions")
classify_btn.click(classify_text, inputs=[sentence, slider], outputs=[result])
examples = gr.Examples(examples=["That movie was amazing but I did not like the actors.",
"Helen is a good swimmer.",
'What do you think about Elon Musk and his accomplishments?',
'Today was a horrible day'],
inputs=[sentence])
gr.Markdown(value = f'Check out my [GitHub]({gitHubLink}) and [LinkedIn]({linkedInLink})',
height = 28)
app.launch(share = True)