pushpikaLiyanagama
commited on
Commit
•
50f3b8d
1
Parent(s):
124983d
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,41 @@
|
|
1 |
-
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
import joblib
|
|
|
5 |
|
6 |
-
scaler
|
|
|
7 |
models = {
|
8 |
-
"processing": joblib.load(
|
9 |
-
"perception": joblib.load(
|
10 |
-
"input": joblib.load(
|
11 |
-
"understanding": joblib.load(
|
12 |
}
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
input_df = pd.DataFrame([features], columns=feature_names)
|
29 |
-
scaled_input = self.scaler.transform(input_df)
|
30 |
-
predictions = {}
|
31 |
-
for target, model in self.models.items():
|
32 |
-
predictions[target] = model.predict(scaled_input)[0]
|
33 |
-
outputs.append(predictions)
|
34 |
-
return outputs
|
35 |
|
36 |
-
|
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
2 |
import joblib
|
3 |
+
import numpy as np
|
4 |
|
5 |
+
# Load the scaler and models
|
6 |
+
scaler = joblib.load('scaler.joblib')
|
7 |
models = {
|
8 |
+
"processing": joblib.load('svm_model_processing.joblib'),
|
9 |
+
"perception": joblib.load('svm_model_perception.joblib'),
|
10 |
+
"input": joblib.load('svm_model_input.joblib'),
|
11 |
+
"understanding": joblib.load('svm_model_understanding.joblib'),
|
12 |
}
|
13 |
|
14 |
+
# Define the prediction function
|
15 |
+
def predict(user_input):
|
16 |
+
# Ensure the input is in the same order as your model expects
|
17 |
+
user_input_array = np.array(user_input).reshape(1, -1)
|
18 |
+
|
19 |
+
# Scale the input using the saved scaler
|
20 |
+
user_input_scaled = scaler.transform(user_input_array)
|
21 |
+
|
22 |
+
# Predict outcomes for all target variables
|
23 |
+
predictions = {}
|
24 |
+
for target, model in models.items():
|
25 |
+
prediction = model.predict(user_input_scaled)
|
26 |
+
predictions[target] = prediction[0]
|
27 |
+
|
28 |
+
return predictions
|
29 |
|
30 |
+
# Define Gradio interface
|
31 |
+
interface = gr.Interface(fn=predict,
|
32 |
+
inputs=gr.Dataframe(type="numpy", row_count=1, col_count=12,
|
33 |
+
headers=['course overview', 'reading file', 'abstract materiale',
|
34 |
+
'concrete material', 'visual materials', 'self-assessment',
|
35 |
+
'exercises submit', 'quiz submitted', 'playing', 'paused',
|
36 |
+
'unstarted', 'buffering']),
|
37 |
+
outputs=gr.JSON(),
|
38 |
+
live=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
# Launch the interface
|
41 |
+
interface.launch()
|