Update app.py
Browse files
app.py
CHANGED
@@ -13,22 +13,29 @@ models = {
|
|
13 |
|
14 |
# Define the prediction function
|
15 |
def predict(user_input):
|
|
|
16 |
user_input_array = np.array(user_input).reshape(1, -1)
|
|
|
|
|
17 |
user_input_scaled = scaler.transform(user_input_array)
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
return predictions
|
20 |
|
21 |
-
# Define
|
22 |
-
interface = gr.Interface(
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
live=True
|
31 |
-
)
|
32 |
|
33 |
-
#
|
34 |
-
|
|
|
13 |
|
14 |
# Define the prediction function
|
15 |
def predict(user_input):
|
16 |
+
# Ensure the input is in the same order as your model expects
|
17 |
user_input_array = np.array(user_input).reshape(1, -1)
|
18 |
+
|
19 |
+
# Scale the input using the saved scaler
|
20 |
user_input_scaled = scaler.transform(user_input_array)
|
21 |
+
|
22 |
+
# Predict outcomes for all target variables
|
23 |
+
predictions = {}
|
24 |
+
for target, model in models.items():
|
25 |
+
prediction = model.predict(user_input_scaled)
|
26 |
+
predictions[target] = prediction[0]
|
27 |
+
|
28 |
return predictions
|
29 |
|
30 |
+
# Define Gradio interface
|
31 |
+
interface = gr.Interface(fn=predict,
|
32 |
+
inputs=gr.Dataframe(type="numpy", row_count=1, col_count=12,
|
33 |
+
headers=['course overview', 'reading file', 'abstract materiale',
|
34 |
+
'concrete material', 'visual materials', 'self-assessment',
|
35 |
+
'exercises submit', 'quiz submitted', 'playing', 'paused',
|
36 |
+
'unstarted', 'buffering']),
|
37 |
+
outputs=gr.JSON(),
|
38 |
+
live=True)
|
|
|
|
|
39 |
|
40 |
+
# Launch the interface
|
41 |
+
interface.launch()
|