|
|
|
|
|
import joblib
|
|
import pandas as pd
|
|
import gradio as gr
|
|
|
|
|
|
scaler = joblib.load("models/scaler.joblib")
|
|
models = {
|
|
"processing": joblib.load("models/svm_model_processing.joblib"),
|
|
"perception": joblib.load("models/svm_model_perception.joblib"),
|
|
"input": joblib.load("models/svm_model_input.joblib"),
|
|
"understanding": joblib.load("models/svm_model_understanding.joblib")
|
|
}
|
|
|
|
def predict(course_overview, reading_file, abstract_materiale, concrete_material, visual_materials,
|
|
self_assessment, exercises_submit, quiz_submitted, playing, paused, unstarted, buffering):
|
|
try:
|
|
input_data = {
|
|
"course_overview": [course_overview],
|
|
"reading_file": [reading_file],
|
|
"abstract_materiale": [abstract_materiale],
|
|
"concrete_material": [concrete_material],
|
|
"visual_materials": [visual_materials],
|
|
"self_assessment": [self_assessment],
|
|
"exercises_submit": [exercises_submit],
|
|
"quiz_submitted": [quiz_submitted],
|
|
"playing": [playing],
|
|
"paused": [paused],
|
|
"unstarted": [unstarted],
|
|
"buffering": [buffering]
|
|
}
|
|
|
|
input_df = pd.DataFrame(input_data)
|
|
input_scaled = scaler.transform(input_df)
|
|
|
|
predictions = {}
|
|
for target, model in models.items():
|
|
pred = model.predict(input_scaled)
|
|
predictions[target] = int(pred[0])
|
|
|
|
return predictions
|
|
|
|
except Exception as e:
|
|
return {"error": str(e)}
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=predict,
|
|
inputs=[
|
|
gr.inputs.Number(label="Course Overview"),
|
|
gr.inputs.Number(label="Reading File"),
|
|
gr.inputs.Number(label="Abstract Materiale"),
|
|
gr.inputs.Number(label="Concrete Material"),
|
|
gr.inputs.Number(label="Visual Materials"),
|
|
gr.inputs.Number(label="Self Assessment"),
|
|
gr.inputs.Number(label="Exercises Submit"),
|
|
gr.inputs.Number(label="Quiz Submitted"),
|
|
gr.inputs.Number(label="Playing"),
|
|
gr.inputs.Number(label="Paused"),
|
|
gr.inputs.Number(label="Unstarted"),
|
|
gr.inputs.Number(label="Buffering")
|
|
],
|
|
outputs="json",
|
|
title="SVM Multi-Target Prediction",
|
|
description="Enter the feature values to get predictions for processing, perception, input, and understanding."
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
iface.launch()
|
|
|