pvanand commited on
Commit
effe83d
·
verified ·
1 Parent(s): 751cd9f

add followup-agent

Browse files
Files changed (1) hide show
  1. main.py +89 -0
main.py CHANGED
@@ -377,6 +377,95 @@ async def search_assistant(query: SearchQueryModel, api_key: str = Depends(verif
377
 
378
  return StreamingResponse(process_response(), media_type="text/event-stream")
379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380
  if __name__ == "__main__":
381
  import uvicorn
382
  logger.info("Starting the application")
 
377
 
378
  return StreamingResponse(process_response(), media_type="text/event-stream")
379
 
380
+
381
+ from pydantic import BaseModel, Field
382
+ import yaml
383
+ import json
384
+
385
+ class FollowupQueryModel(BaseModel):
386
+ query: str = Field(..., description="User's query for the followup agent")
387
+ model_id: ModelID = Field(
388
+ default="openai/gpt-4o-mini",
389
+ description="ID of the model to use for response generation"
390
+ )
391
+ conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
392
+ user_id: str = Field(..., description="Unique identifier for the user")
393
+
394
+ class Config:
395
+ schema_extra = {
396
+ "example": {
397
+ "query": "How can I improve my productivity?",
398
+ "model_id": "openai/gpt-4o-mini",
399
+ "conversation_id": "123e4567-e89b-12d3-a456-426614174000",
400
+ "user_id": "user123"
401
+ }
402
+ }
403
+
404
+ FOLLOWUP_AGENT_PROMPT = """
405
+ You are a helpful assistant with the following skills, use them, as necessary. If the user request needs further clarification, analyze it and generate clarifying questions with options. Else respond with a helpful answer. <response>response to user request in markdown</response> <clarification> questions: - text: [First clarifying question] options: - [Option 1] - [Option 2] - [Option 3] - [Option 4 (if needed)] - text: [Second clarifying question] options: - [Option 1] - [Option 2] - [Option 3] # Add more questions as needed # make sure this section is in valid YAML format </clarification>
406
+ """
407
+
408
+ def parse_followup_response(response):
409
+ response_parts = response.split("<response>")
410
+ if len(response_parts) > 1:
411
+ response_content = response_parts[1].split("</response>")[0].strip()
412
+ else:
413
+ response_content = ""
414
+
415
+ clarification_parts = response.split("<clarification>")
416
+ if len(clarification_parts) > 1:
417
+ clarification_yaml = clarification_parts[1].split("</clarification>")[0].strip()
418
+ try:
419
+ clarification = yaml.safe_load(clarification_yaml)
420
+ except yaml.YAMLError:
421
+ clarification = None
422
+ else:
423
+ clarification = None
424
+
425
+ return response_content, clarification
426
+
427
+ @app.post("/followup-agent")
428
+ async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
429
+ """
430
+ Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
431
+ Requires API Key authentication via X-API-Key header.
432
+ """
433
+ logger.info(f"Received followup agent query: {query.query}")
434
+
435
+ if query.conversation_id not in conversations:
436
+ conversations[query.conversation_id] = [
437
+ {"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
438
+ ]
439
+
440
+ conversations[query.conversation_id].append({"role": "user", "content": query.query})
441
+ last_activity[query.conversation_id] = time.time()
442
+
443
+ # Limit tokens in the conversation history
444
+ limited_conversation = conversations[query.conversation_id]
445
+
446
+ def process_response():
447
+ full_response = ""
448
+ for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
449
+ full_response += content
450
+ yield content
451
+
452
+ response_content, clarification = parse_followup_response(full_response)
453
+
454
+ result = {
455
+ "response": response_content,
456
+ "clarification": clarification
457
+ }
458
+
459
+ yield "\n\n" + json.dumps(result)
460
+
461
+ # Add the assistant's response to the conversation history
462
+ conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
463
+
464
+ background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
465
+ logger.info(f"Completed followup agent response for query: {query.query}")
466
+
467
+ return StreamingResponse(process_response(), media_type="text/event-stream")
468
+
469
  if __name__ == "__main__":
470
  import uvicorn
471
  logger.info("Starting the application")