Spaces:
Sleeping
Sleeping
# !pip install mistune | |
import mistune | |
from mistune.plugins.table import table | |
from jinja2 import Template | |
import re | |
import os | |
def md_to_html(md_text): | |
renderer = mistune.HTMLRenderer() | |
markdown_renderer = mistune.Markdown(renderer, plugins=[table]) | |
html_content = markdown_renderer(md_text) | |
return html_content.replace('\n', '') | |
####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------#### | |
from datetime import datetime | |
import psycopg2 | |
from dotenv import load_dotenv, find_dotenv | |
# Load environment variables from .env file | |
load_dotenv("keys.env") | |
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') | |
BRAVE_API_KEY = os.getenv('BRAVE_API_KEY') | |
GROQ_API_KEY = os.getenv("GROQ_API_KEY") | |
HELICON_API_KEY = os.getenv("HELICON_API_KEY") | |
SUPABASE_USER = os.environ['SUPABASE_USER'] | |
SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD'] | |
def insert_data(user_id, user_query, subtopic_query, response, html_report): | |
# Connect to your database | |
conn = psycopg2.connect( | |
dbname="postgres", | |
user=SUPABASE_USER, | |
password=SUPABASE_PASSWORD, | |
host="aws-0-us-west-1.pooler.supabase.com", | |
port="5432" | |
) | |
cur = conn.cursor() | |
insert_query = """ | |
INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at) | |
VALUES (%s, %s, %s, %s, %s, %s); | |
""" | |
cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now())) | |
conn.commit() | |
cur.close() | |
conn.close() | |
####-----------------------------------------------------END----------------------------------------------------------#### | |
import ast | |
from fpdf import FPDF | |
import re | |
import pandas as pd | |
import nltk | |
import requests | |
import json | |
from retry import retry | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from bs4 import BeautifulSoup | |
from nltk.corpus import stopwords | |
from nltk.tokenize import word_tokenize | |
from brave import Brave | |
from fuzzy_json import loads | |
from half_json.core import JSONFixer | |
from openai import OpenAI | |
from together import Together | |
from urllib.parse import urlparse | |
import trafilatura | |
llm_default_small = "meta-llama/Llama-3-8b-chat-hf" | |
llm_default_medium = "meta-llama/Llama-3-70b-chat-hf" | |
SysPromptData = """You are expert in information extraction from the given context. | |
Steps to follow: | |
1. Check if relevant factual data regarding <USER QUERY> is present in the <SCRAPED DATA>. | |
- IF YES, extract the maximum relevant factual information related to <USER QUERY> from the <SCRAPED DATA>. | |
- IF NO, then return "N/A" | |
Rules to follow: | |
- Return N/A if information is not present in the scraped data. | |
- FORGET EVERYTHING YOU KNOW, Only output information that is present in the scraped data, DO NOT MAKE UP INFORMATION | |
""" | |
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments." | |
SysPromptSearch = """You are a search query generator, create a concise Google search query, focusing only on the main topic and omitting additional redundant details, include year if necessory, 2024, Do not add any additional comments. OUTPUT ONLY THE SEARCH QUERY | |
#Additional instructions: | |
##Use the following search operators if necessory | |
OR #to cover multiple topics | |
* #wildcard to match any word or phrase | |
AND #to include specific topics.""" | |
import tiktoken # Used to limit tokens | |
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better | |
def limit_tokens(input_string, token_limit=7500): | |
""" | |
Limit tokens sent to the model | |
""" | |
return encoding.decode(encoding.encode(input_string)[:token_limit]) | |
together_client = OpenAI( | |
api_key=TOGETHER_API_KEY, | |
base_url="https://together.hconeai.com/v1", | |
default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"}) | |
groq_client = OpenAI( | |
api_key=GROQ_API_KEY, | |
base_url="https://groq.hconeai.com/openai/v1", | |
default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"}) | |
# Groq model names | |
llm_default_small = "llama3-8b-8192" | |
llm_default_medium = "llama3-70b-8192" | |
# Together Model names (fallback) | |
llm_fallback_small = "meta-llama/Llama-3-8b-chat-hf" | |
llm_fallback_medium = "meta-llama/Llama-3-70b-chat-hf" | |
### ------END OF LLM CONFIG-------- ### | |
def together_response(message, model = llm_default_small, SysPrompt = SysPromptDefault, temperature=0.2, frequency_penalty =0.1, max_tokens= 2000): | |
messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}] | |
params = { | |
"model": model, | |
"messages": messages, | |
"temperature": temperature, | |
"frequency_penalty": frequency_penalty, | |
"max_tokens": max_tokens | |
} | |
try: | |
response = groq_client.chat.completions.create(**params) | |
return response.choices[0].message.content | |
except Exception as e: | |
print(f"Error calling GROQ API: {e}") | |
params["model"] = llm_fallback_small if model == llm_default_small else llm_fallback_medium | |
response = together_client.chat.completions.create(**params) | |
return response.choices[0].message.content | |
def json_from_text(text): | |
""" | |
Extracts JSON from text using regex and fuzzy JSON loading. | |
""" | |
try: | |
return json.loads(text) | |
except: | |
match = re.search(r'\{[\s\S]*\}', text) | |
if match: | |
json_out = match.group(0) | |
else: | |
json_out = text | |
# Use Fuzzy JSON loading | |
return loads(json_out) | |
def remove_stopwords(text): | |
stop_words = set(stopwords.words('english')) | |
words = word_tokenize(text) | |
filtered_text = [word for word in words if word.lower() not in stop_words] | |
return ' '.join(filtered_text) | |
def rephrase_content(data_format, content, query): | |
if data_format == "Structured data": | |
return together_response(f""" | |
<SCRAPED DATA>{content}</SCRAPED DATA> | |
extract the maximum relevant factual information covering all aspects of <USER QUERY>{query}</USER QUERY> ONLY IF AVAILABLE in the scraped data.""", | |
SysPrompt=SysPromptData, | |
max_tokens=900, | |
) | |
elif data_format == "Quantitative data": | |
return together_response( | |
f"return only the numerical or quantitative data regarding the query: {{{query}}} structured into .md tables, using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}", | |
SysPrompt=SysPromptData, | |
max_tokens=500, | |
) | |
else: | |
return together_response( | |
f"return only the factual information regarding the query: {{{query}}} using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}", | |
SysPrompt=SysPromptData, | |
max_tokens=500, | |
) | |
class Scraper: | |
def __init__(self, user_agent="Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"): | |
self.session = requests.Session() | |
self.session.headers.update({"User-Agent": user_agent}) | |
def fetch_content(self, url): | |
try: | |
response = self.session.get(url, timeout=2) | |
if response.status_code == 200: | |
return response.text | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching page content for {url}: {e}") | |
return None | |
def extract_main_content(html): | |
extracted = trafilatura.extract( | |
html, | |
output_format="markdown", | |
target_language="en", | |
include_tables=True, | |
include_images=False, | |
include_links=False, | |
deduplicate=True, | |
) | |
if extracted: | |
return trafilatura.utils.sanitize(extracted) | |
else: | |
return "" | |
def process_content(data_format, url, query): | |
scraper = Scraper() | |
html_content = scraper.fetch_content(url) | |
if html_content: | |
content = extract_main_content(html_content) | |
if content: | |
rephrased_content = rephrase_content( | |
data_format=data_format, | |
content=limit_tokens(remove_stopwords(content), token_limit=4000), | |
query=query, | |
) | |
return rephrased_content, url | |
return "", url | |
def fetch_and_extract_content(data_format, urls, query): | |
with ThreadPoolExecutor(max_workers=len(urls)) as executor: | |
future_to_url = { | |
executor.submit(process_content, data_format, url, query): url | |
for url in urls | |
} | |
all_text_with_urls = [future.result() for future in as_completed(future_to_url)] | |
return all_text_with_urls | |
#@retry(tries=3, delay=0.25) | |
def search_brave(query, num_results=5): | |
cleaned_query = query #re.sub(r'[^a-zA-Z0-9]+', '', query) | |
search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip() | |
cleaned_search_query = re.sub(r'[^\w\s]', '', search_query).strip() #re.sub(r'[^a-zA-Z0-9*]+', '', search_query) | |
brave = Brave(BRAVE_API_KEY) | |
search_results = brave.search(q=cleaned_search_query, count=num_results) | |
return [url.__str__() for url in search_results.urls],cleaned_search_query | |