Spaces:
Running
Running
File size: 28,539 Bytes
68394ea adb504f d3051c0 68394ea b1c8f17 26e0ddc d3051c0 68394ea 2bb5179 f5f5951 62ab01b 4d0ec3e 26e0ddc b1c8f17 2e76cf7 adb504f 4bf6be6 adb504f d3051c0 751cd9f d3051c0 b1c8f17 1fc729a d3051c0 68394ea 26e0ddc d3051c0 68394ea 26e0ddc 2bb5179 2e6b166 751cd9f 2e6b166 2bb5179 2e6b166 751cd9f 2bb5179 26e0ddc 4d0ec3e 26e0ddc 2bb5179 26e0ddc d3051c0 26e0ddc 68394ea 768bfff 68394ea 751cd9f 4d0ec3e 68394ea bc4a455 4d0ec3e f8ac6db 68394ea 26e0ddc f8ac6db d3051c0 adb504f 68394ea b4b055b 68394ea 4d0ec3e 26e0ddc 4d0ec3e d3051c0 adb504f 4d0ec3e adb504f 68394ea 5c4af3f 68394ea 4d0ec3e 5c4af3f 68394ea 4d0ec3e 68394ea 4d0ec3e 5c4af3f 68394ea 4d0ec3e 68394ea 4d0ec3e 68394ea 4d0ec3e 68394ea 4d0ec3e 62ab01b 68394ea d3051c0 68394ea 768bfff 751cd9f 768bfff 4d0ec3e 68394ea f8ac6db 68394ea f8ac6db 68394ea 4d0ec3e 68394ea 2fc91ef 2bb5179 62ab01b 91592b0 2bb5179 768bfff 4d0ec3e b66bfbf 768bfff 91592b0 768bfff 91592b0 768bfff 4d0ec3e 91592b0 2bb5179 16ef4d2 768bfff 4d0ec3e 91592b0 e7c157d 91592b0 2bb5179 91592b0 2bb5179 91592b0 2bb5179 91592b0 2bb5179 91592b0 2bb5179 91592b0 113e85f 751cd9f 113e85f 149368e 91592b0 113e85f 91592b0 113e85f a5175b8 e5c2d73 91592b0 113e85f 91592b0 a5175b8 149368e 113e85f 149368e 113e85f 91592b0 149368e 91592b0 149368e effe83d 5d03011 effe83d 5594ef5 fc04628 b26206f fc04628 b26206f fc04628 b26206f fc04628 b26206f fc04628 b26206f fc04628 b26206f fc04628 b26206f fc04628 d94e7f0 fc04628 d94e7f0 fc04628 b26206f fc04628 b26206f fc04628 b26206f e36d1a0 f5f5951 788373a f029274 f5f5951 f029274 9056c98 f029274 9056c98 f5f5951 f029274 f5f5951 f029274 f5f5951 f029274 f5f5951 f029274 f5f5951 effe83d 2cda7d3 b26206f effe83d b26206f effe83d 5c074f1 effe83d d7f34ff ecd288b 149368e ecd288b 149368e ecd288b 7f3d0a2 149368e ecd288b 149368e ecd288b 9dccc6b ecd288b 149368e 9df08b9 149368e 7f3d0a2 9df08b9 0a18670 ecd288b d7f34ff 149368e d7f34ff 91592b0 f6c67ca bfcfdb0 f6c67ca 54210e7 4d0ec3e adb504f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 |
from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks
from fastapi.security import APIKeyHeader
from fastapi.responses import StreamingResponse
from pydantic import BaseModel, Field
from typing import Literal, List, Dict
import os
from functools import lru_cache
from openai import OpenAI
from uuid import uuid4
import tiktoken
import sqlite3
import time
from datetime import datetime, timedelta
import asyncio
import requests
from prompts import *
from fastapi_cache import FastAPICache
from fastapi_cache.backends.inmemory import InMemoryBackend
from fastapi_cache.decorator import cache
import logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
app = FastAPI()
API_KEY_NAME = "X-API-Key"
API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key")
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
ModelID = Literal[
"openai/gpt-4o-mini",
"meta-llama/llama-3-70b-instruct",
"anthropic/claude-3.5-sonnet",
"deepseek/deepseek-coder",
"anthropic/claude-3-haiku",
"openai/gpt-3.5-turbo-instruct",
"qwen/qwen-72b-chat",
"google/gemma-2-27b-it"
]
class QueryModel(BaseModel):
user_query: str = Field(..., description="User's coding query")
model_id: ModelID = Field(
default="meta-llama/llama-3-70b-instruct",
description="ID of the model to use for response generation"
)
conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
user_id: str = Field(..., description="Unique identifier for the user")
class Config:
schema_extra = {
"example": {
"user_query": "How do I implement a binary search in Python?",
"model_id": "meta-llama/llama-3-70b-instruct",
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
"user_id": "user123"
}
}
class NewsQueryModel(BaseModel):
query: str = Field(..., description="News topic to search for")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
class Config:
schema_extra = {
"example": {
"query": "Latest developments in AI",
"model_id": "openai/gpt-4o-mini"
}
}
@lru_cache()
def get_api_keys():
logger.info("Loading API keys")
return {
"OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}",
"BRAVE_API_KEY": os.environ['BRAVE_API_KEY']
}
api_keys = get_api_keys()
or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1")
# In-memory storage for conversations
conversations: Dict[str, List[Dict[str, str]]] = {}
last_activity: Dict[str, float] = {}
# Token encoding
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
def limit_tokens(input_string, token_limit=6000):
return encoding.decode(encoding.encode(input_string)[:token_limit])
def calculate_tokens(msgs):
return sum(len(encoding.encode(str(m))) for m in msgs)
def chat_with_llama_stream(messages, model="openai/gpt-4o-mini", max_llm_history=4, max_output_tokens=2500):
logger.info(f"Starting chat with model: {model}")
while calculate_tokens(messages) > (8000 - max_output_tokens):
if len(messages) > max_llm_history:
messages = [messages[0]] + messages[-max_llm_history:]
else:
max_llm_history -= 1
if max_llm_history < 2:
error_message = "Token limit exceeded. Please shorten your input or start a new conversation."
logger.error(error_message)
raise HTTPException(status_code=400, detail=error_message)
try:
response = or_client.chat.completions.create(
model=model,
messages=messages,
max_tokens=max_output_tokens,
stream=True
)
full_response = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
content = chunk.choices[0].delta.content
full_response += content
yield content
# After streaming, add the full response to the conversation history
messages.append({"role": "assistant", "content": full_response})
logger.info("Chat completed successfully")
except Exception as e:
logger.error(f"Error in model response: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}")
async def verify_api_key(api_key: str = Security(api_key_header)):
if api_key != API_KEY:
logger.warning("Invalid API key used")
raise HTTPException(status_code=403, detail="Could not validate credentials")
return api_key
# SQLite setup
DB_PATH = '/app/data/conversations.db'
def init_db():
logger.info("Initializing database")
os.makedirs(os.path.dirname(DB_PATH), exist_ok=True)
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS conversations
(id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id TEXT,
conversation_id TEXT,
message TEXT,
response TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''')
conn.commit()
conn.close()
logger.info("Database initialized successfully")
init_db()
def update_db(user_id, conversation_id, message, response):
logger.info(f"Updating database for conversation: {conversation_id}")
conn = sqlite3.connect(DB_PATH)
c = conn.cursor()
c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response)
VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response))
conn.commit()
conn.close()
logger.info("Database updated successfully")
async def clear_inactive_conversations():
while True:
logger.info("Clearing inactive conversations")
current_time = time.time()
inactive_convos = [conv_id for conv_id, last_time in last_activity.items()
if current_time - last_time > 1800] # 30 minutes
for conv_id in inactive_convos:
if conv_id in conversations:
del conversations[conv_id]
if conv_id in last_activity:
del last_activity[conv_id]
logger.info(f"Cleared {len(inactive_convos)} inactive conversations")
await asyncio.sleep(60) # Check every minute
@app.on_event("startup")
async def startup_event():
logger.info("Starting up the application")
FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache")
asyncio.create_task(clear_inactive_conversations())
@app.post("/coding-assistant")
async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Coding assistant endpoint that provides programming help based on user queries.
Available models:
- meta-llama/llama-3-70b-instruct (default)
- anthropic/claude-3.5-sonnet
- deepseek/deepseek-coder
- anthropic/claude-3-haiku
- openai/gpt-3.5-turbo-instruct
- qwen/qwen-72b-chat
- google/gemma-2-27b-it
- openai/gpt-4o-mini
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received coding assistant query: {query.user_query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."}
]
conversations[query.conversation_id].append({"role": "user", "content": query.user_query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response)
logger.info(f"Completed coding assistant response for query: {query.user_query}")
return StreamingResponse(process_response(), media_type="text/event-stream")
# New functions for news assistant
def internet_search(query, search_type="web", num_results=20):
logger.info(f"Performing internet search for query: {query}, type: {search_type}")
url = f"https://api.search.brave.com/res/v1/{'web' if search_type == 'web' else 'news'}/search"
headers = {
"Accept": "application/json",
"Accept-Encoding": "gzip",
"X-Subscription-Token": api_keys["BRAVE_API_KEY"]
}
params = {"q": query}
response = requests.get(url, headers=headers, params=params)
if response.status_code != 200:
logger.error(f"Failed to fetch search results. Status code: {response.status_code}")
return []
search_data = response.json()["web"]["results"] if search_type == "web" else response.json()["results"]
processed_results = [
{
"title": item["title"],
"snippet": item["extra_snippets"][0],
"last_updated": item.get("age", "")
}
for item in search_data
if item.get("extra_snippets")
][:num_results]
logger.info(f"Retrieved {len(processed_results)} search results")
return processed_results
@lru_cache(maxsize=100)
def cached_internet_search(query: str):
logger.info(f"Performing cached internet search for query: {query}")
return internet_search(query, search_type="news")
def analyze_data(query, data_type="news"):
logger.info(f"Analyzing {data_type} for query: {query}")
if data_type == "news":
data = cached_internet_search(query)
prompt_generator = generate_news_prompt
system_prompt = NEWS_ASSISTANT_PROMPT
else:
data = internet_search(query, search_type="web")
prompt_generator = generate_search_prompt
system_prompt = SEARCH_ASSISTANT_PROMPT
if not data:
logger.error(f"Failed to fetch {data_type} data")
return None
prompt = prompt_generator(query, data)
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
]
logger.info(f"{data_type.capitalize()} analysis completed")
return messages
class QueryModel(BaseModel):
query: str = Field(..., description="Search query")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
class Config:
schema_extra = {
"example": {
"query": "What are the latest advancements in quantum computing?",
"model_id": "meta-llama/llama-3-70b-instruct"
}
}
def search_assistant_api(query, data_type, model="openai/gpt-4o-mini"):
logger.info(f"Received {data_type} assistant query: {query}")
messages = analyze_data(query, data_type)
if not messages:
logger.error(f"Failed to fetch {data_type} data")
raise HTTPException(status_code=500, detail=f"Failed to fetch {data_type} data")
def process_response():
logger.info(f"Generating response using LLM: {messages}")
full_response = ""
for content in chat_with_llama_stream(messages, model=model):
full_response += content
yield content
logger.info(f"Completed {data_type} assistant response for query: {query}")
logger.info(f"LLM Response: {full_response}")
return process_response
def create_streaming_response(generator):
return StreamingResponse(generator(), media_type="text/event-stream")
@app.post("/news-assistant")
async def news_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)):
"""
News assistant endpoint that provides summaries and analysis of recent news based on user queries.
Requires API Key authentication via X-API-Key header.
"""
response_generator = search_assistant_api(query.query, "news", model=query.model_id)
return create_streaming_response(response_generator)
@app.post("/search-assistant")
async def search_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)):
"""
Search assistant endpoint that provides summaries and analysis of web search results based on user queries.
Requires API Key authentication via X-API-Key header.
"""
response_generator = search_assistant_api(query.query, "web", model=query.model_id)
return create_streaming_response(response_generator)
from pydantic import BaseModel, Field
import yaml
import json
from yaml.loader import SafeLoader
class FollowupQueryModel(BaseModel):
query: str = Field(..., description="User's query for the followup agent")
model_id: ModelID = Field(
default="openai/gpt-4o-mini",
description="ID of the model to use for response generation"
)
conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation")
user_id: str = Field(..., description="Unique identifier for the user")
class Config:
schema_extra = {
"example": {
"query": "How can I improve my productivity?",
"model_id": "openai/gpt-4o-mini",
"conversation_id": "123e4567-e89b-12d3-a456-426614174000",
"user_id": "user123"
}
}
import re
def parse_followup_response(input_text):
# Define patterns for response and interact
response_pattern = re.compile(r'<response>(.*?)<\/response>', re.DOTALL)
interact_pattern = re.compile(r'<interact>(.*?)<\/interact>', re.DOTALL)
# Find all matches for response and interact
response_matches = response_pattern.finditer(input_text)
interact_matches = interact_pattern.finditer(input_text)
# Initialize variables to keep track of the position
last_end = 0
combined_response = ""
parsed_interacts = []
# Combine responses and capture everything in between
for response_match in response_matches:
# Capture text before the current response tag
combined_response += input_text[last_end:response_match.start()].strip() + "\n"
# Add the response content
combined_response += response_match.group(1).strip() + "\n"
# Update the last end position
last_end = response_match.end()
# Check for interacts and parse them
for interact_match in interact_matches:
# Capture text before the current interact tag
combined_response += input_text[last_end:interact_match.start()].strip() + "\n"
# Process the interact block
interact_text = interact_match.group(1).strip()
if interact_text:
# Split by "text:" to separate each question block
question_blocks = interact_text.split("- text:")
# Loop through each block and extract the question and its options
for block in question_blocks[1:]:
# Extract the question using regex (up to the "options:" part)
question_match = re.search(r'^(.*?)\s*options:', block, re.DOTALL)
if question_match:
question = question_match.group(1).strip().strip('"')
# Extract the options using regex
options_match = re.search(r'options:\s*(.*?)$', block, re.DOTALL)
if options_match:
options = [option.strip().strip('"') for option in options_match.group(1).split('-') if option.strip()]
# Add the parsed question and options to the list
parsed_interacts.append({'question': question, 'options': options})
# Update the last end position
last_end = interact_match.end()
# Capture any remaining text after the last tag
combined_response += input_text[last_end:].strip()
return combined_response.strip(), parsed_interacts
import re
def parse_followup_and_tools(input_text):
# Remove extra brackets and excess quotes
cleaned_text = re.sub(r'\[|\]|"+', ' ', input_text)
# Extract response content
response_pattern = re.compile(r'<response>(.*?)</response>', re.DOTALL)
response_parts = response_pattern.findall(cleaned_text)
combined_response = ' '.join(response_parts)
# Normalize spaces in the combined response
combined_response = ' '.join(combined_response.split())
parsed_interacts = []
parsed_tools = []
# Parse interacts and tools
blocks = re.finditer(r'<(interact|tools)>(.*?)</\1>', cleaned_text, re.DOTALL)
for block in blocks:
block_type, content = block.groups()
content = content.strip()
if block_type == 'interact':
question_blocks = re.split(r'\s*-\s*text:', content)[1:]
for qblock in question_blocks:
parts = re.split(r'\s*options:\s*', qblock, maxsplit=1)
if len(parts) == 2:
question = ' '.join(parts[0].split()) # Normalize spaces
options = [' '.join(opt.split()) for opt in re.split(r'\s*-\s*', parts[1]) if opt.strip()]
parsed_interacts.append({'question': question, 'options': options})
elif block_type == 'tools':
tool_match = re.search(r'text:\s*(.*?)\s*options:\s*-\s*(.*)', content, re.DOTALL)
if tool_match:
tool_name = ' '.join(tool_match.group(1).split()) # Normalize spaces
option = ' '.join(tool_match.group(2).split()) # Normalize spaces
parsed_tools.append({'name': tool_name, 'input': option})
return combined_response, parsed_interacts, parsed_tools
@app.post("/followup-agent")
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact = parse_followup_response(full_response)
result = {
"response": response_content,
"clarification": interact
}
yield "\n\n" + json.dumps(result)
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
@app.post("/v2/followup-agent")
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact = parse_followup_response(full_response)
result = {
"clarification": interact
}
yield "<json>" + json.dumps(result)
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
@app.post("/v2/followup-tools-agent")
def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": MULTI_AGENT_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
yield content
full_response += content
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact, tools = parse_followup_and_tools(full_response)
result = {
"clarification": interact,
"tools": tools
}
yield "<json>"+ json.dumps(result)+"</json>"
# Process tool if present
if tools and len(tools) > 0:
tool = tools[0] # Assume only one tool is present
if tool["name"] in ["news", "web"]:
search_query = tool["input"]
search_response = search_assistant_api(search_query, tool["name"], model=query.model_id)
yield "<report>"
for content in search_response():
yield content
full_response += content
yield "</report>"
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
@app.post("/v3/followup-agent")
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": FOLLOWUP_AGENT_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact = parse_followup_response(full_response)
result = {
"clarification": interact
}
yield "<json>" +"[[["+ json.dumps(result)+"]]]"+"</json>"
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
## Digiyatra
@app.post("/digiyatra-followup")
async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)):
"""
Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries.
Requires API Key authentication via X-API-Key header.
"""
logger.info(f"Received followup agent query: {query.query}")
if query.conversation_id not in conversations:
conversations[query.conversation_id] = [
{"role": "system", "content": FOLLOWUP_DIGIYATRA_PROMPT}
]
conversations[query.conversation_id].append({"role": "user", "content": query.query})
last_activity[query.conversation_id] = time.time()
# Limit tokens in the conversation history
limited_conversation = conversations[query.conversation_id]
def process_response():
full_response = ""
for content in chat_with_llama_stream(limited_conversation, model=query.model_id):
full_response += content
yield content
logger.info(f"LLM RAW response for query: {query.query}: {full_response}")
response_content, interact = parse_followup_response(full_response)
result = {
"response": response_content,
"clarification": interact
}
yield "\n\n" + json.dumps(result)
# Add the assistant's response to the conversation history
conversations[query.conversation_id].append({"role": "assistant", "content": full_response})
background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response)
logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}")
return StreamingResponse(process_response(), media_type="text/event-stream")
if __name__ == "__main__":
import uvicorn
logger.info("Starting the application")
uvicorn.run(app, host="0.0.0.0", port=7860) |