general_chat / helper_functions_api.py
pvanand's picture
Update helper_functions_api.py
5a22824 verified
raw
history blame
11.2 kB
# !pip install mistune
import mistune
from mistune.plugins.table import table
from jinja2 import Template
import re
import os
import hrequests
def md_to_html(md_text):
renderer = mistune.HTMLRenderer()
markdown_renderer = mistune.Markdown(renderer, plugins=[table])
html_content = markdown_renderer(md_text)
return html_content.replace('\n', '')
####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------####
from datetime import datetime
import psycopg2
from dotenv import load_dotenv, find_dotenv
# Load environment variables from .env file
load_dotenv("keys.env")
TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
BRAVE_API_KEY = os.getenv('BRAVE_API_KEY')
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
HELICON_API_KEY = os.getenv("HELICON_API_KEY")
SUPABASE_USER = os.environ['SUPABASE_USER']
SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD']
def insert_data(user_id, user_query, subtopic_query, response, html_report):
# Connect to your database
conn = psycopg2.connect(
dbname="postgres",
user=SUPABASE_USER,
password=SUPABASE_PASSWORD,
host="aws-0-us-west-1.pooler.supabase.com",
port="5432"
)
cur = conn.cursor()
insert_query = """
INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at)
VALUES (%s, %s, %s, %s, %s, %s);
"""
cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now()))
conn.commit()
cur.close()
conn.close()
####-----------------------------------------------------END----------------------------------------------------------####
import ast
from fpdf import FPDF
import re
import pandas as pd
import nltk
import requests
import json
from retry import retry
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from brave import Brave
from fuzzy_json import loads
from half_json.core import JSONFixer
from openai import OpenAI
from together import Together
from urllib.parse import urlparse
import trafilatura
llm_default_small = "meta-llama/Llama-3-8b-chat-hf"
llm_default_medium = "meta-llama/Llama-3-70b-chat-hf"
# SysPromptData = """You are expert in information extraction from the given context.
# Steps to follow:
# 1. Check if relevant factual data regarding <USER QUERY> is present in the <SCRAPED DATA>.
# - IF YES, extract the maximum relevant factual information related to <USER QUERY> from the <SCRAPED DATA>.
# - IF NO, then return "N/A"
# Rules to follow:
# - Return N/A if information is not present in the scraped data.
# - FORGET EVERYTHING YOU KNOW, Only output information that is present in the scraped data, DO NOT MAKE UP INFORMATION
# """
SysPromptData = """
You are an AI assistant tasked with extracting relevant information from scraped website data based on a given query. Your goal is to provide accurate and concise information that directly relates to the query, using only the data provided.
Guidelines for extraction:
1. Only use information present in the scraped data.
2. Focus on extracting facts, tables, and direct quotes that are relevant to the query.
3. If there is no relevant information in the scraped data, state that clearly.
4. Do not make assumptions or add information not present in the data.
5. If the query is ambiguous, interpret it in the most reasonable way based on the available data.
"""
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
SysPromptSearch = """You are a search query generator, create a concise Google search query, focusing only on the main topic and omitting additional redundant details, include year if necessory, 2024, Do not add any additional comments. OUTPUT ONLY THE SEARCH QUERY
#Additional instructions:
##Use the following search operators if necessory
OR #to cover multiple topics
* #wildcard to match any word or phrase
AND #to include specific topics."""
import tiktoken # Used to limit tokens
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better
def limit_tokens(input_string, token_limit=7500):
"""
Limit tokens sent to the model
"""
return encoding.decode(encoding.encode(input_string)[:token_limit])
together_client = OpenAI(
api_key=TOGETHER_API_KEY,
base_url="https://together.hconeai.com/v1",
default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"})
groq_client = OpenAI(
api_key=GROQ_API_KEY,
base_url="https://groq.hconeai.com/openai/v1",
default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"})
# Groq model names
llm_default_small = "llama3-8b-8192"
llm_default_medium = "llama3-70b-8192"
# Together Model names (fallback)
llm_fallback_small = "meta-llama/Llama-3-8b-chat-hf"
llm_fallback_medium = "meta-llama/Llama-3-70b-chat-hf"
### ------END OF LLM CONFIG-------- ###
def together_response(message, model = llm_default_small, SysPrompt = SysPromptDefault, temperature=0.2, frequency_penalty =0.1, max_tokens= 2000):
messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}]
params = {
"model": model,
"messages": messages,
"temperature": temperature,
"frequency_penalty": frequency_penalty,
"max_tokens": max_tokens
}
try:
response = groq_client.chat.completions.create(**params)
return response.choices[0].message.content
except Exception as e:
print(f"Error calling GROQ API: {e}")
params["model"] = llm_fallback_small if model == llm_default_small else llm_fallback_medium
response = together_client.chat.completions.create(**params)
return response.choices[0].message.content
def json_from_text(text):
"""
Extracts JSON from text using regex and fuzzy JSON loading.
"""
try:
return json.loads(text)
except:
match = re.search(r'\{[\s\S]*\}', text)
if match:
json_out = match.group(0)
else:
json_out = text
# Use Fuzzy JSON loading
return loads(json_out)
def remove_stopwords(text):
stop_words = set(stopwords.words('english'))
words = word_tokenize(text)
filtered_text = [word for word in words if word.lower() not in stop_words]
return ' '.join(filtered_text)
def rephrase_content(data_format, content, query):
if data_format == "Structured data":
return together_response(f"""Here is the scraped website data:
<scraped_data>
{content}
</scraped_data>
Your task is to extract information from this data that is relevant to the following query:
<query>{query}</query>
""",
SysPrompt=SysPromptData,
max_tokens=900,
)
elif data_format == "Quantitative data":
return together_response(
f"return only the numerical or quantitative data regarding the query: {{{query}}} structured into .md tables, using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}",
SysPrompt=SysPromptData,
max_tokens=500,
)
else:
return together_response(
f"return only the factual information regarding the query: {{{query}}} using the scraped context:{{{limit_tokens(content,token_limit=1000)}}}",
SysPrompt=SysPromptData,
max_tokens=500,
)
def fetch_content(url):
try:
response = hrequests.get(url)
if response.status_code == 200:
return response.text
except Exception as e:
print(f"Error fetching page content for {url}: {e}")
return None
def extract_main_content(html):
extracted = trafilatura.extract(
html,
output_format="markdown",
target_language="en",
include_tables=True,
include_images=False,
include_links=False,
deduplicate=True,
)
if extracted:
return trafilatura.utils.sanitize(extracted)
else:
return ""
def process_content(data_format, url, query):
html_content = fetch_content(url)
if html_content:
content = extract_main_content(html_content)
if content:
rephrased_content = rephrase_content(
data_format=data_format,
content=limit_tokens(remove_stopwords(content), token_limit=4000),
query=query,
)
return rephrased_content, url
return "", url
def fetch_and_extract_content(data_format, urls, query):
with ThreadPoolExecutor(max_workers=len(urls)) as executor:
future_to_url = {
executor.submit(process_content, data_format, url, query): url
for url in urls
}
all_text_with_urls = [future.result() for future in as_completed(future_to_url)]
return all_text_with_urls
def search_brave(query, num_results=5):
"""Fetch search results from Brave's API."""
cleaned_query = query #re.sub(r'[^a-zA-Z0-9]+', '', query)
search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip()
cleaned_search_query = re.sub(r'[^\w\s]', '', search_query).strip() #re.sub(r'[^a-zA-Z0-9*]+', '', search_query)
url = "https://api.search.brave.com/res/v1/web/search"
headers = {
"Accept": "application/json",
"Accept-Encoding": "gzip",
"X-Subscription-Token": BRAVE_API_KEY
}
params = {"q": cleaned_search_query}
response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
result = response.json() # Return the JSON response if successful
return [item["url"] for item in result["web"]["results"]][:num_results],cleaned_search_query
else:
return [],cleaned_search_query # Return error code if not successful
# #@retry(tries=3, delay=0.25)
# def search_brave(query, num_results=5):
# cleaned_query = query #re.sub(r'[^a-zA-Z0-9]+', '', query)
# search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip()
# cleaned_search_query = re.sub(r'[^\w\s]', '', search_query).strip() #re.sub(r'[^a-zA-Z0-9*]+', '', search_query)
# brave = Brave(BRAVE_API_KEY)
# search_results = brave.search(q=cleaned_search_query, count=num_results)
# return [url.__str__() for url in search_results.urls],cleaned_search_query