Spaces:
Running
Running
# File: prompts.py | |
DOCUMENT_OUTLINE_PROMPT_SYSTEM = """You are a document generator. Provide the outline of the document requested in <prompt></prompt> in JSON format. | |
Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating content for that particular section or subsection. | |
make sure the Sections follow a logical flow and each prompt's content does not overlap with other sections. | |
OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags | |
<output> | |
{ | |
"Document": { | |
"Title": "Document Title", | |
"Author": "Author Name", | |
"Date": "YYYY-MM-DD", | |
"Version": "1.0", | |
"Sections": [ | |
{ | |
"SectionNumber": "1", | |
"Title": "Section Title", | |
"Content": "Specific prompt or instruction for generating content for this section", | |
"Subsections": [ | |
{ | |
"SectionNumber": "1.1", | |
"Title": "Subsection Title", | |
"Content": "Specific prompt or instruction for generating content for this subsection" | |
} | |
] | |
} | |
] | |
} | |
} | |
</output>""" | |
DOCUMENT_OUTLINE_PROMPT_USER = """<prompt>{query}</prompt>""" | |
DOCUMENT_SECTION_PROMPT_SYSTEM = """You are a document generator, You need to output only the content requested in the section in the prompt. | |
FORMAT YOUR OUTPUT AS MARKDOWN ENCLOSED IN <response></response> tags | |
<overall_objective>{overall_objective}</overall_objective> | |
<document_layout>{document_layout}</document_layout>""" | |
DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>""" | |
########################################## | |
DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM = """You are a document template generator. Provide the outline of the document requested in <prompt></prompt> in JSON format. | |
Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating template with placeholder text /example content for that particular section or subsection. Specify in each prompt to output as a template and use placeholder text/ tables as necessory. | |
make sure the Sections follow a logical flow and each prompt's content does not overlap with other sections. | |
OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags | |
<output> | |
{ | |
"Document": { | |
"Title": "Document Title", | |
"Author": "Author Name", | |
"Date": "YYYY-MM-DD", | |
"Version": "1.0", | |
"Sections": [ | |
{ | |
"SectionNumber": "1", | |
"Title": "Section Title", | |
"Content": "Specific prompt or instruction for generating template for this section", | |
"Subsections": [ | |
{ | |
"SectionNumber": "1.1", | |
"Title": "Subsection Title", | |
"Content": "Specific prompt or instruction for generating template for this subsection" | |
} | |
] | |
} | |
] | |
} | |
} | |
</output>""" | |
DOCUMENT_TEMPLATE_PROMPT_USER = """<prompt>{query}</prompt>""" | |
DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM = """You are a document template generator,You need to output only the content requested in the section in the prompt, Use placeholder text/examples/tables wherever required. | |
FORMAT YOUR OUTPUT AS A TEMPLATE ENCLOSED IN <response></response> tags | |
<overall_objective>{overall_objective}</overall_objective> | |
<document_layout>{document_layout}</document_layout>""" | |
DOCUMENT_TEMPLATE_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>""" | |
# File: llm_observability.py | |
import sqlite3 | |
import json | |
from datetime import datetime | |
from typing import Dict, Any, List, Optional | |
class LLMObservabilityManager: | |
def __init__(self, db_path: str = "llm_observability_v2.db"): | |
self.db_path = db_path | |
self.create_table() | |
def create_table(self): | |
with sqlite3.connect(self.db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS llm_observations ( | |
id TEXT PRIMARY KEY, | |
conversation_id TEXT, | |
created_at DATETIME, | |
status TEXT, | |
request TEXT, | |
response TEXT, | |
model TEXT, | |
total_tokens INTEGER, | |
prompt_tokens INTEGER, | |
completion_tokens INTEGER, | |
latency FLOAT, | |
user TEXT | |
) | |
''') | |
def insert_observation(self, response: Dict[str, Any], conversation_id: str, status: str, request: str, latency: float, user: str): | |
created_at = datetime.fromtimestamp(response['created']) | |
with sqlite3.connect(self.db_path) as conn: | |
cursor = conn.cursor() | |
cursor.execute(''' | |
INSERT INTO llm_observations | |
(id, conversation_id, created_at, status, request, response, model, total_tokens, prompt_tokens, completion_tokens, latency, user) | |
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) | |
''', ( | |
response['id'], | |
conversation_id, | |
created_at, | |
status, | |
request, | |
json.dumps(response['choices'][0]['message']), | |
response['model'], | |
response['usage']['total_tokens'], | |
response['usage']['prompt_tokens'], | |
response['usage']['completion_tokens'], | |
latency, | |
user | |
)) | |
def get_observations(self, conversation_id: Optional[str] = None) -> List[Dict[str, Any]]: | |
with sqlite3.connect(self.db_path) as conn: | |
cursor = conn.cursor() | |
if conversation_id: | |
cursor.execute('SELECT * FROM llm_observations WHERE conversation_id = ? ORDER BY created_at', (conversation_id,)) | |
else: | |
cursor.execute('SELECT * FROM llm_observations ORDER BY created_at') | |
rows = cursor.fetchall() | |
column_names = [description[0] for description in cursor.description] | |
return [dict(zip(column_names, row)) for row in rows] | |
def get_all_observations(self) -> List[Dict[str, Any]]: | |
return self.get_observations() | |
# File: app.py | |
import os | |
import json | |
import re | |
import asyncio | |
import time | |
from typing import List, Dict, Optional, Any, Callable, Union | |
from openai import OpenAI | |
import logging | |
import functools | |
from fastapi import APIRouter, HTTPException, Request, UploadFile, File, Depends | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
from fastapi_cache import FastAPICache | |
from fastapi_cache.decorator import cache | |
import psycopg2 | |
from datetime import datetime | |
import base64 | |
from fastapi import Form | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
def log_execution(func: Callable) -> Callable: | |
def wrapper(*args: Any, **kwargs: Any) -> Any: | |
logger.info(f"Executing {func.__name__}") | |
try: | |
result = func(*args, **kwargs) | |
logger.info(f"{func.__name__} completed successfully") | |
return result | |
except Exception as e: | |
logger.error(f"Error in {func.__name__}: {e}") | |
raise | |
return wrapper | |
# aiclient.py | |
class AIClient: | |
def __init__(self): | |
self.client = OpenAI( | |
base_url="https://openrouter.ai/api/v1", | |
api_key="sk-or-v1-" + os.environ['OPENROUTER_API_KEY'] | |
) | |
self.observability_manager = LLMObservabilityManager() | |
def generate_response( | |
self, | |
messages: List[Dict[str, str]], | |
model: str = "openai/gpt-4o-mini", | |
max_tokens: int = 32000, | |
conversation_id: str = None, | |
user: str = "anonymous" | |
) -> Optional[str]: | |
if not messages: | |
return None | |
start_time = time.time() | |
response = self.client.chat.completions.create( | |
model=model, | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=False | |
) | |
end_time = time.time() | |
latency = end_time - start_time | |
# Log the observation | |
self.observability_manager.insert_observation( | |
response=response.dict(), | |
conversation_id=conversation_id or "default", | |
status="success", | |
request=json.dumps(messages), | |
latency=latency, | |
user=user | |
) | |
return response.choices[0].message.content | |
def generate_vision_response( | |
self, | |
messages: List[Dict[str, Union[str, List[Dict[str, Union[str, Dict[str, str]]]]]]], | |
model: str = "google/gemini-flash-1.5-8b", | |
max_tokens: int = 32000, | |
conversation_id: str = None, | |
user: str = "anonymous" | |
) -> Optional[str]: | |
if not messages: | |
return None | |
start_time = time.time() | |
response = self.client.chat.completions.create( | |
model=model, | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=False | |
) | |
end_time = time.time() | |
latency = end_time - start_time | |
# Log the observation | |
self.observability_manager.insert_observation( | |
response=response.dict(), | |
conversation_id=conversation_id or "default", | |
status="success", | |
request=json.dumps(messages), | |
latency=latency, | |
user=user | |
) | |
return response.choices[0].message.content | |
class VisionTools: | |
def __init__(self, ai_client): | |
self.ai_client = ai_client | |
async def extract_images_info(self, images: List[UploadFile]) -> str: | |
try: | |
image_contents = [] | |
for image in images: | |
image_content = await image.read() | |
base64_image = base64.b64encode(image_content).decode('utf-8') | |
image_contents.append({ | |
"type": "image_url", | |
"image_url": { | |
"url": f"data:image/jpeg;base64,{base64_image}" | |
} | |
}) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": "Extract the contents of these images in detail in a structured format, focusing on any text, tables, diagrams, or visual elements that might be relevant for document generation." | |
}, | |
*image_contents | |
] | |
} | |
] | |
image_context = self.ai_client.generate_vision_response(messages) | |
return image_context | |
except Exception as e: | |
print(f"Error processing images: {str(e)}") | |
return "" | |
class DatabaseManager: | |
"""Manages database operations.""" | |
def __init__(self): | |
self.db_params = { | |
"dbname": "postgres", | |
"user": os.environ['SUPABASE_USER'], | |
"password": os.environ['SUPABASE_PASSWORD'], | |
"host": "aws-0-us-west-1.pooler.supabase.com", | |
"port": "5432" | |
} | |
def update_database(self, user_id: str, user_query: str, response: str) -> None: | |
with psycopg2.connect(**self.db_params) as conn: | |
with conn.cursor() as cur: | |
insert_query = """ | |
INSERT INTO ai_document_generator (user_id, user_query, response) | |
VALUES (%s, %s, %s); | |
""" | |
cur.execute(insert_query, (user_id, user_query, response)) | |
class DocumentGenerator: | |
def __init__(self, ai_client: AIClient): | |
self.ai_client = ai_client | |
self.document_outline = None | |
self.content_messages = [] | |
def extract_between_tags(text: str, tag: str) -> str: | |
pattern = f"<{tag}>(.*?)</{tag}>" | |
match = re.search(pattern, text, re.DOTALL) | |
return match.group(1).strip() if match else "" | |
def remove_duplicate_title(content: str, title: str, section_number: str) -> str: | |
patterns = [ | |
rf"^#+\s*{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}", | |
rf"^#+\s*{re.escape(title)}", | |
rf"^{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}", | |
rf"^{re.escape(title)}", | |
] | |
for pattern in patterns: | |
content = re.sub(pattern, "", content, flags=re.MULTILINE | re.IGNORECASE) | |
return content.lstrip() | |
def generate_document_outline(self, query: str, template: bool = False, image_context: str = "", max_retries: int = 3) -> Optional[Dict]: | |
messages = [ | |
{"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM}, | |
{"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query) if not template else DOCUMENT_TEMPLATE_PROMPT_USER.format(query=query, image_context=image_context)} | |
] | |
# Update user content to include image context if provided | |
if image_context: | |
messages[1]["content"] += f"<attached_images>\n\n{image_context}\n\n</attached_images>" | |
for attempt in range(max_retries): | |
outline_response = self.ai_client.generate_response(messages, model="openai/gpt-4o") | |
outline_json_text = self.extract_between_tags(outline_response, "output") | |
try: | |
self.document_outline = json.loads(outline_json_text) | |
return self.document_outline | |
except json.JSONDecodeError as e: | |
if attempt < max_retries - 1: | |
logger.warning(f"Failed to parse JSON (attempt {attempt + 1}): {e}") | |
logger.info("Retrying...") | |
else: | |
logger.error(f"Failed to parse JSON after {max_retries} attempts: {e}") | |
return None | |
def generate_content(self, title: str, content_instruction: str, section_number: str, template: bool = False) -> str: | |
SECTION_PROMPT_USER = DOCUMENT_SECTION_PROMPT_USER if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_USER | |
self.content_messages.append({ | |
"role": "user", | |
"content": SECTION_PROMPT_USER.format( | |
section_or_subsection_title=title, | |
content_instruction=content_instruction | |
) | |
}) | |
section_response = self.ai_client.generate_response(self.content_messages) | |
content = self.extract_between_tags(section_response, "response") | |
content = self.remove_duplicate_title(content, title, section_number) | |
self.content_messages.append({ | |
"role": "assistant", | |
"content": section_response | |
}) | |
return content | |
class MarkdownConverter: | |
def slugify(text: str) -> str: | |
return re.sub(r'\W+', '-', text.lower()) | |
def generate_toc(cls, sections: List[Dict]) -> str: | |
toc = "<div style='page-break-before: always;'></div>\n\n" | |
toc += "<h2 style='color: #2c3e50; text-align: center;'>Table of Contents</h2>\n\n" | |
toc += "<nav style='background-color: #f8f9fa; padding: 20px; border-radius: 5px; line-height: 1.6;'>\n\n" | |
for section in sections: | |
section_number = section['SectionNumber'] | |
section_title = section['Title'] | |
toc += f"<p><a href='#{cls.slugify(section_title)}' style='color: #3498db; text-decoration: none;'>{section_number}. {section_title}</a></p>\n\n" | |
for subsection in section.get('Subsections', []): | |
subsection_number = subsection['SectionNumber'] | |
subsection_title = subsection['Title'] | |
toc += f"<p style='margin-left: 20px;'><a href='#{cls.slugify(subsection_title)}' style='color: #2980b9; text-decoration: none;'>{subsection_number} {subsection_title}</a></p>\n\n" | |
toc += "</nav>\n\n" | |
return toc | |
def convert_to_markdown(cls, document: Dict) -> str: | |
markdown = "<div style='text-align: center; padding-top: 33vh;'>\n\n" | |
markdown += f"<h1 style='color: #2c3e50; border-bottom: 2px solid #3498db; padding-bottom: 10px; display: inline-block;'>{document['Title']}</h1>\n\n" | |
markdown += f"<p style='color: #7f8c8d;'><em>By {document['Author']}</em></p>\n\n" | |
markdown += f"<p style='color: #95a5a6;'>Version {document['Version']} | {document['Date']}</p>\n\n" | |
markdown += "</div>\n\n" | |
markdown += cls.generate_toc(document['Sections']) | |
markdown += "<div style='max-width: 800px; margin: 0 auto; font-family: \"Segoe UI\", Arial, sans-serif; line-height: 1.6;'>\n\n" | |
for section in document['Sections']: | |
markdown += "<div style='page-break-before: always;'></div>\n\n" | |
section_number = section['SectionNumber'] | |
section_title = section['Title'] | |
markdown += f"<h2 id='{cls.slugify(section_title)}' style='color: #2c3e50; border-bottom: 1px solid #bdc3c7; padding-bottom: 5px;'>{section_number}. {section_title}</h2>\n\n" | |
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{section['Content']}\n\n</div>\n\n" | |
for subsection in section.get('Subsections', []): | |
subsection_number = subsection['SectionNumber'] | |
subsection_title = subsection['Title'] | |
markdown += f"<h3 id='{cls.slugify(subsection_title)}' style='color: #34495e;'>{subsection_number} {subsection_title}</h3>\n\n" | |
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{subsection['Content']}\n\n</div>\n\n" | |
markdown += "</div>" | |
return markdown | |
router = APIRouter() | |
class JsonDocumentResponse(BaseModel): | |
json_document: Dict | |
# class JsonDocumentRequest(BaseModel): | |
# query: str | |
# template: bool = False | |
# images: Optional[List[UploadFile]] = File(None) | |
# documents: Optional[List[UploadFile]] = File(None) | |
# conversation_id: str = "" | |
class MarkdownDocumentRequest(BaseModel): | |
json_document: Dict | |
query: str | |
template: bool = False | |
conversation_id: str = None | |
MESSAGE_DELIMITER = b"\n---DELIMITER---\n" | |
def yield_message(message): | |
message_json = json.dumps(message, ensure_ascii=False).encode('utf-8') | |
return message_json + MESSAGE_DELIMITER | |
async def generate_document_stream(document_generator: DocumentGenerator, document_outline: Dict, query: str, template: bool = False): | |
document_generator.document_outline = document_outline | |
db_manager = DatabaseManager() | |
overall_objective = query | |
document_layout = json.dumps(document_generator.document_outline, indent=2) | |
SECTION_PROMPT_SYSTEM = DOCUMENT_SECTION_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM | |
document_generator.content_messages = [ | |
{ | |
"role": "system", | |
"content": SECTION_PROMPT_SYSTEM.format( | |
overall_objective=overall_objective, | |
document_layout=document_layout | |
) | |
} | |
] | |
for section in document_generator.document_outline["Document"].get("Sections", []): | |
section_title = section.get("Title", "") | |
section_number = section.get("SectionNumber", "") | |
content_instruction = section.get("Content", "") | |
logging.info(f"Generating content for section: {section_title}") | |
content = document_generator.generate_content(section_title, content_instruction, section_number, template) | |
section["Content"] = content | |
yield yield_message({ | |
"type": "document_section", | |
"content": { | |
"section_number": section_number, | |
"section_title": section_title, | |
"content": content | |
} | |
}) | |
for subsection in section.get("Subsections", []): | |
subsection_title = subsection.get("Title", "") | |
subsection_number = subsection.get("SectionNumber", "") | |
subsection_content_instruction = subsection.get("Content", "") | |
logging.info(f"Generating content for subsection: {subsection_title}") | |
content = document_generator.generate_content(subsection_title, subsection_content_instruction, subsection_number, template) | |
subsection["Content"] = content | |
yield yield_message({ | |
"type": "document_section", | |
"content": { | |
"section_number": subsection_number, | |
"section_title": subsection_title, | |
"content": content | |
} | |
}) | |
markdown_document = MarkdownConverter.convert_to_markdown(document_generator.document_outline["Document"]) | |
yield yield_message({ | |
"type": "complete_document", | |
"content": { | |
"markdown": markdown_document, | |
"json": document_generator.document_outline | |
}, | |
}); | |
db_manager.update_database("elevatics", query, markdown_document) | |
async def generate_markdown_document_stream_endpoint(request: MarkdownDocumentRequest): | |
ai_client = AIClient() | |
document_generator = DocumentGenerator(ai_client) | |
async def stream_generator(): | |
try: | |
async for chunk in generate_document_stream(document_generator, request.json_document, request.query, request.template): | |
yield chunk | |
except Exception as e: | |
yield yield_message({ | |
"type": "error", | |
"content": str(e) | |
}) | |
return StreamingResponse(stream_generator(), media_type="application/octet-stream") | |
async def generate_document_outline_endpoint( | |
query: str = Form(...), | |
template: bool = Form(False), | |
conversation_id: str = Form(...), | |
images: Optional[List[UploadFile]] = File(None), | |
documents: Optional[List[UploadFile]] = File(None) | |
): | |
ai_client = AIClient() | |
document_generator = DocumentGenerator(ai_client) | |
vision_tools = VisionTools(ai_client) | |
try: | |
image_context = "" | |
if images: | |
image_context = await vision_tools.extract_images_info(images) | |
json_document = document_generator.generate_document_outline( | |
query, | |
template, | |
image_context=image_context | |
) | |
if json_document is None: | |
raise HTTPException(status_code=500, detail="Failed to generate a valid document outline") | |
return JsonDocumentResponse(json_document=json_document) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
## OBSERVABILITY | |
from uuid import uuid4 | |
import csv | |
from io import StringIO | |
class ObservationResponse(BaseModel): | |
observations: List[Dict] | |
def create_csv_response(observations: List[Dict]) -> StreamingResponse: | |
def iter_csv(data): | |
output = StringIO() | |
writer = csv.DictWriter(output, fieldnames=data[0].keys() if data else []) | |
writer.writeheader() | |
for row in data: | |
writer.writerow(row) | |
output.seek(0) | |
yield output.read() | |
headers = { | |
'Content-Disposition': 'attachment; filename="observations.csv"' | |
} | |
return StreamingResponse(iter_csv(observations), media_type="text/csv", headers=headers) | |
async def get_last_observations(limit: int = 10, format: str = "json"): | |
observability_manager = LLMObservabilityManager() | |
try: | |
# Get all observations, sorted by created_at in descending order | |
all_observations = observability_manager.get_observations() | |
all_observations.sort(key=lambda x: x['created_at'], reverse=True) | |
# Get the last conversation_id | |
if all_observations: | |
last_conversation_id = all_observations[0]['conversation_id'] | |
# Filter observations for the last conversation | |
last_conversation_observations = [ | |
obs for obs in all_observations | |
if obs['conversation_id'] == last_conversation_id | |
][:limit] | |
if format.lower() == "csv": | |
return create_csv_response(last_conversation_observations) | |
else: | |
return ObservationResponse(observations=last_conversation_observations) | |
else: | |
if format.lower() == "csv": | |
return create_csv_response([]) | |
else: | |
return ObservationResponse(observations=[]) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Failed to retrieve observations: {str(e)}") | |
## TEST CACHE | |
class CacheItem(BaseModel): | |
key: str | |
value: str | |
async def set_cache(item: CacheItem): | |
try: | |
# Set the cache with a default expiration of 1 hour (3600 seconds) | |
await FastAPICache.set(item.key, item.value, expire=3600) | |
return {"message": f"Cache set for key: {item.key}"} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Failed to set cache: {str(e)}") | |
async def get_cache(key: str): | |
try: | |
value = await FastAPICache.get(key) | |
if value is None: | |
raise HTTPException(status_code=404, detail=f"No cache found for key: {key}") | |
return {"key": key, "value": value} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Failed to get cache: {str(e)}") | |