Spaces:
Running
Running
from fuzzy_json import loads | |
from half_json.core import JSONFixer | |
from together import Together | |
from retry import retry | |
import re | |
from dotenv import load_dotenv | |
import os | |
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from fastapi.middleware.cors import CORSMiddleware | |
# Retrieve environment variables | |
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY") | |
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments." | |
SysPromptList = "You are now in the role of an expert AI who can extract structured information from user request. All elements must be in double quotes. You must respond ONLY with a valid python List. Do not add any additional comments." | |
def together_response(message, model = "meta-llama/Llama-3-8b-chat-hf", SysPrompt = SysPromptDefault): | |
client = Together(api_key=TOGETHER_API_KEY) | |
messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}] | |
response = client.chat.completions.create( | |
model=model, | |
messages=messages, | |
temperature=0.2, | |
) | |
return response.choices[0].message.content | |
def json_from_text(text): | |
""" | |
Extracts JSON from text using regex and fuzzy JSON loading. | |
""" | |
match = re.search(r'\{[\s\S]*\}', text) | |
if match: | |
json_out = match.group(0) | |
else: | |
json_out = text | |
try: | |
# Using fuzzy json loader | |
return loads(json_out) | |
except Exception: | |
# Using JSON fixer/ Fixes even half json/ Remove if you need an exception | |
fix_json = JSONFixer() | |
return loads(fix_json.fix(json_out).line) | |
def generate_topics(user_input,num_topics,previous_query): | |
prompt = f"""create a list of {num_topics} subtopics to follow for conducting {user_input} in the context of {previous_query}, RETURN VALID PYTHON LIST""" | |
response_topics = together_response(prompt, model = "meta-llama/Llama-3-8b-chat-hf", SysPrompt = SysPromptList) | |
subtopics = json_from_text(response_topics) | |
return subtopics | |
# Define the app | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
# Create a Pydantic model to handle the input data | |
class TopicInput(BaseModel): | |
user_input: str | |
num_topics: int | |
previous_query: str | |
def api_home(): | |
return {'detail': 'Welcome to FastAPI Subtopics API! /n visit https://pvanand-generate-subtopics.hf.space/docs to test'} | |
async def create_topics(input: TopicInput): | |
topics = generate_topics(input.user_input, input.num_topics, input.num_topics.previous_query) | |
return {"topics": topics} | |