general_chat / main.py
pvanand's picture
Create main.py
b5b2e6a verified
raw
history blame
2.7 kB
from fuzzy_json import loads
from half_json.core import JSONFixer
from together import Together
from retry import retry
import re
from dotenv import load_dotenv
import os
from fastapi import FastAPI
from pydantic import BaseModel
# Retrieve environment variables
TOGETHER_API_KEY = "8e4274ffef010b6dd4b4343ed4a3158292691507f02ce99a58e09a0bd5400eab"
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
SysPromptList = "You are now in the role of an expert AI who can extract structured information from user request. All elements must be in double quotes. You must respond ONLY with a valid python List. Do not add any additional comments."
# Import FastAPI and other necessary libraries
# Define the app
app = FastAPI()
# Create a Pydantic model to handle the input data
class TopicInput(BaseModel):
user_input: str
num_topics: int
@retry(tries=3, delay=1)
def together_response(message, model = "meta-llama/Llama-3-8b-chat-hf", SysPrompt = SysPromptDefault):
client = Together(api_key=TOGETHER_API_KEY)
messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=0.2,
)
return response.choices[0].message.content
def json_from_text(text):
"""
Extracts JSON from text using regex and fuzzy JSON loading.
"""
match = re.search(r'\{[\s\S]*\}', text)
if match:
json_out = match.group(0)
else:
json_out = text
try:
# Using fuzzy json loader
return loads(json_out)
except Exception:
# Using JSON fixer/ Fixes even half json/ Remove if you need an exception
fix_json = JSONFixer()
return loads(fix_json.fix(json_out).line)
SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments."
SysPromptList = "You are now in the role of an expert AI who can extract structured information from user request. All elements must be in double quotes. You must respond ONLY with a valid python List. Do not add any additional comments."
def generate_topics(user_input,num_topics):
prompt = f"""create a list of {num_topics} subtopics to follow for conducting {user_input}, RETURN VALID PYTHON LIST"""
response_topics = together_response(prompt, model = "meta-llama/Llama-3-8b-chat-hf", SysPrompt = SysPromptList)
subtopics = json_from_text(response_topics)
return subtopics
@app.post("/generate_topics/")
async def create_topics(input: TopicInput):
topics = generate_topics(input.user_input, input.num_topics)
return {"topics": topics}