Spaces:
Running
Running
Create document_generator_v2.py
Browse files- document_generator_v2.py +639 -0
document_generator_v2.py
ADDED
@@ -0,0 +1,639 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# File: prompts.py
|
2 |
+
|
3 |
+
DOCUMENT_OUTLINE_PROMPT_SYSTEM = """You are a document generator. Provide the outline of the document requested in <prompt></prompt> in JSON format.
|
4 |
+
Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating content for that particular section or subsection.
|
5 |
+
make sure the Sections follow a logical flow and each prompt's content does not overlap with other sections.
|
6 |
+
OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags
|
7 |
+
<output>
|
8 |
+
{
|
9 |
+
"Document": {
|
10 |
+
"Title": "Document Title",
|
11 |
+
"Author": "Author Name",
|
12 |
+
"Date": "YYYY-MM-DD",
|
13 |
+
"Version": "1.0",
|
14 |
+
|
15 |
+
"Sections": [
|
16 |
+
{
|
17 |
+
"SectionNumber": "1",
|
18 |
+
"Title": "Section Title",
|
19 |
+
"Content": "Specific prompt or instruction for generating content for this section",
|
20 |
+
"Subsections": [
|
21 |
+
{
|
22 |
+
"SectionNumber": "1.1",
|
23 |
+
"Title": "Subsection Title",
|
24 |
+
"Content": "Specific prompt or instruction for generating content for this subsection"
|
25 |
+
}
|
26 |
+
]
|
27 |
+
}
|
28 |
+
]
|
29 |
+
}
|
30 |
+
}
|
31 |
+
</output>"""
|
32 |
+
|
33 |
+
DOCUMENT_OUTLINE_PROMPT_USER = """<prompt>{query}</prompt>"""
|
34 |
+
|
35 |
+
DOCUMENT_SECTION_PROMPT_SYSTEM = """You are a document generator, You need to output only the content requested in the section in the prompt.
|
36 |
+
FORMAT YOUR OUTPUT AS MARKDOWN ENCLOSED IN <response></response> tags
|
37 |
+
<overall_objective>{overall_objective}</overall_objective>
|
38 |
+
<document_layout>{document_layout}</document_layout>"""
|
39 |
+
|
40 |
+
DOCUMENT_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
|
41 |
+
|
42 |
+
##########################################
|
43 |
+
|
44 |
+
DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM = """You are a document template generator. Provide the outline of the document requested in <prompt></prompt> in JSON format.
|
45 |
+
Include sections and subsections if required. Use the "Content" field to provide a specific prompt or instruction for generating template with placeholder text /example content for that particular section or subsection. Specify in each prompt to output as a template and use placeholder text/ tables as necessory.
|
46 |
+
make sure the Sections follow a logical flow and each prompt's content does not overlap with other sections.
|
47 |
+
OUTPUT IN FOLLOWING JSON FORMAT enclosed in <output> tags
|
48 |
+
<output>
|
49 |
+
{
|
50 |
+
"Document": {
|
51 |
+
"Title": "Document Title",
|
52 |
+
"Author": "Author Name",
|
53 |
+
"Date": "YYYY-MM-DD",
|
54 |
+
"Version": "1.0",
|
55 |
+
|
56 |
+
"Sections": [
|
57 |
+
{
|
58 |
+
"SectionNumber": "1",
|
59 |
+
"Title": "Section Title",
|
60 |
+
"Content": "Specific prompt or instruction for generating template for this section",
|
61 |
+
"Subsections": [
|
62 |
+
{
|
63 |
+
"SectionNumber": "1.1",
|
64 |
+
"Title": "Subsection Title",
|
65 |
+
"Content": "Specific prompt or instruction for generating template for this subsection"
|
66 |
+
}
|
67 |
+
]
|
68 |
+
}
|
69 |
+
]
|
70 |
+
}
|
71 |
+
}
|
72 |
+
</output>"""
|
73 |
+
|
74 |
+
DOCUMENT_TEMPLATE_PROMPT_USER = """<prompt>{query}</prompt>"""
|
75 |
+
|
76 |
+
DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM = """You are a document template generator,You need to output only the content requested in the section in the prompt, Use placeholder text/examples/tables wherever required.
|
77 |
+
FORMAT YOUR OUTPUT AS A TEMPLATE ENCLOSED IN <response></response> tags
|
78 |
+
<overall_objective>{overall_objective}</overall_objective>
|
79 |
+
<document_layout>{document_layout}</document_layout>"""
|
80 |
+
|
81 |
+
DOCUMENT_TEMPLATE_SECTION_PROMPT_USER = """<prompt>Output the content for the section "{section_or_subsection_title}" formatted as markdown. Follow this instruction: {content_instruction}</prompt>"""
|
82 |
+
|
83 |
+
|
84 |
+
# File: llm_observability.py
|
85 |
+
|
86 |
+
import sqlite3
|
87 |
+
import json
|
88 |
+
from datetime import datetime
|
89 |
+
from typing import Dict, Any, List, Optional
|
90 |
+
|
91 |
+
class LLMObservabilityManager:
|
92 |
+
def __init__(self, db_path: str = "llm_observability.db"):
|
93 |
+
self.db_path = db_path
|
94 |
+
self.create_table()
|
95 |
+
|
96 |
+
def create_table(self):
|
97 |
+
with sqlite3.connect(self.db_path) as conn:
|
98 |
+
cursor = conn.cursor()
|
99 |
+
cursor.execute('''
|
100 |
+
CREATE TABLE IF NOT EXISTS llm_observations (
|
101 |
+
id TEXT PRIMARY KEY,
|
102 |
+
conversation_id TEXT,
|
103 |
+
created_at DATETIME,
|
104 |
+
status TEXT,
|
105 |
+
request TEXT,
|
106 |
+
response TEXT,
|
107 |
+
model TEXT,
|
108 |
+
total_tokens INTEGER,
|
109 |
+
prompt_tokens INTEGER,
|
110 |
+
completion_tokens INTEGER,
|
111 |
+
latency FLOAT,
|
112 |
+
user TEXT
|
113 |
+
)
|
114 |
+
''')
|
115 |
+
|
116 |
+
def insert_observation(self, response: Dict[str, Any], conversation_id: str, status: str, request: str, latency: float, user: str):
|
117 |
+
created_at = datetime.fromtimestamp(response['created'])
|
118 |
+
|
119 |
+
with sqlite3.connect(self.db_path) as conn:
|
120 |
+
cursor = conn.cursor()
|
121 |
+
cursor.execute('''
|
122 |
+
INSERT INTO llm_observations
|
123 |
+
(id, conversation_id, created_at, status, request, response, model, total_tokens, prompt_tokens, completion_tokens, latency, user)
|
124 |
+
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
125 |
+
''', (
|
126 |
+
response['id'],
|
127 |
+
conversation_id,
|
128 |
+
created_at,
|
129 |
+
status,
|
130 |
+
request,
|
131 |
+
json.dumps(response['choices'][0]['message']),
|
132 |
+
response['model'],
|
133 |
+
response['usage']['total_tokens'],
|
134 |
+
response['usage']['prompt_tokens'],
|
135 |
+
response['usage']['completion_tokens'],
|
136 |
+
latency,
|
137 |
+
user
|
138 |
+
))
|
139 |
+
|
140 |
+
def get_observations(self, conversation_id: Optional[str] = None) -> List[Dict[str, Any]]:
|
141 |
+
with sqlite3.connect(self.db_path) as conn:
|
142 |
+
cursor = conn.cursor()
|
143 |
+
if conversation_id:
|
144 |
+
cursor.execute('SELECT * FROM llm_observations WHERE conversation_id = ? ORDER BY created_at', (conversation_id,))
|
145 |
+
else:
|
146 |
+
cursor.execute('SELECT * FROM llm_observations ORDER BY created_at')
|
147 |
+
rows = cursor.fetchall()
|
148 |
+
|
149 |
+
column_names = [description[0] for description in cursor.description]
|
150 |
+
return [dict(zip(column_names, row)) for row in rows]
|
151 |
+
|
152 |
+
def get_all_observations(self) -> List[Dict[str, Any]]:
|
153 |
+
return self.get_observations()
|
154 |
+
|
155 |
+
|
156 |
+
# File: app.py
|
157 |
+
import os
|
158 |
+
import json
|
159 |
+
import re
|
160 |
+
import asyncio
|
161 |
+
import time
|
162 |
+
from typing import List, Dict, Optional, Any, Callable, Union
|
163 |
+
from openai import OpenAI
|
164 |
+
import logging
|
165 |
+
import functools
|
166 |
+
from fastapi import APIRouter, HTTPException, Request, UploadFile, File, Depends
|
167 |
+
from fastapi.responses import StreamingResponse
|
168 |
+
from pydantic import BaseModel
|
169 |
+
from fastapi_cache.decorator import cache
|
170 |
+
import psycopg2
|
171 |
+
from datetime import datetime
|
172 |
+
import base64
|
173 |
+
from fastapi import Form
|
174 |
+
|
175 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
176 |
+
logger = logging.getLogger(__name__)
|
177 |
+
|
178 |
+
def log_execution(func: Callable) -> Callable:
|
179 |
+
@functools.wraps(func)
|
180 |
+
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
181 |
+
logger.info(f"Executing {func.__name__}")
|
182 |
+
try:
|
183 |
+
result = func(*args, **kwargs)
|
184 |
+
logger.info(f"{func.__name__} completed successfully")
|
185 |
+
return result
|
186 |
+
except Exception as e:
|
187 |
+
logger.error(f"Error in {func.__name__}: {e}")
|
188 |
+
raise
|
189 |
+
return wrapper
|
190 |
+
|
191 |
+
# aiclient.py
|
192 |
+
|
193 |
+
class AIClient:
|
194 |
+
def __init__(self):
|
195 |
+
self.client = OpenAI(
|
196 |
+
base_url="https://openrouter.ai/api/v1",
|
197 |
+
api_key="sk-or-v1-" + os.environ['OPENROUTER_API_KEY']
|
198 |
+
)
|
199 |
+
self.observability_manager = LLMObservabilityManager()
|
200 |
+
|
201 |
+
@log_execution
|
202 |
+
def generate_response(
|
203 |
+
self,
|
204 |
+
messages: List[Dict[str, str]],
|
205 |
+
model: str = "openai/gpt-4o-mini",
|
206 |
+
max_tokens: int = 32000,
|
207 |
+
conversation_id: str = None,
|
208 |
+
user: str = "anonymous"
|
209 |
+
) -> Optional[str]:
|
210 |
+
if not messages:
|
211 |
+
return None
|
212 |
+
|
213 |
+
start_time = time.time()
|
214 |
+
response = self.client.chat.completions.create(
|
215 |
+
model=model,
|
216 |
+
messages=messages,
|
217 |
+
max_tokens=max_tokens,
|
218 |
+
stream=False
|
219 |
+
)
|
220 |
+
end_time = time.time()
|
221 |
+
latency = end_time - start_time
|
222 |
+
|
223 |
+
# Log the observation
|
224 |
+
self.observability_manager.insert_observation(
|
225 |
+
response=response.dict(),
|
226 |
+
conversation_id=conversation_id or "default",
|
227 |
+
status="success",
|
228 |
+
request=json.dumps(messages),
|
229 |
+
latency=latency,
|
230 |
+
user=user
|
231 |
+
)
|
232 |
+
|
233 |
+
return response.choices[0].message.content
|
234 |
+
|
235 |
+
@log_execution
|
236 |
+
def generate_vision_response(
|
237 |
+
self,
|
238 |
+
messages: List[Dict[str, Union[str, List[Dict[str, Union[str, Dict[str, str]]]]]]],
|
239 |
+
model: str = "google/gemini-flash-1.5-8b",
|
240 |
+
max_tokens: int = 32000,
|
241 |
+
conversation_id: str = None,
|
242 |
+
user: str = "anonymous"
|
243 |
+
) -> Optional[str]:
|
244 |
+
if not messages:
|
245 |
+
return None
|
246 |
+
|
247 |
+
start_time = time.time()
|
248 |
+
response = self.client.chat.completions.create(
|
249 |
+
model=model,
|
250 |
+
messages=messages,
|
251 |
+
max_tokens=max_tokens,
|
252 |
+
stream=False
|
253 |
+
)
|
254 |
+
end_time = time.time()
|
255 |
+
latency = end_time - start_time
|
256 |
+
|
257 |
+
# Log the observation
|
258 |
+
self.observability_manager.insert_observation(
|
259 |
+
response=response.dict(),
|
260 |
+
conversation_id=conversation_id or "default",
|
261 |
+
status="success",
|
262 |
+
request=json.dumps(messages),
|
263 |
+
latency=latency,
|
264 |
+
user=user
|
265 |
+
)
|
266 |
+
|
267 |
+
return response.choices[0].message.content
|
268 |
+
|
269 |
+
|
270 |
+
class VisionTools:
|
271 |
+
def __init__(self, ai_client):
|
272 |
+
self.ai_client = ai_client
|
273 |
+
|
274 |
+
async def extract_images_info(self, images: List[UploadFile]) -> str:
|
275 |
+
try:
|
276 |
+
image_contents = []
|
277 |
+
for image in images:
|
278 |
+
image_content = await image.read()
|
279 |
+
base64_image = base64.b64encode(image_content).decode('utf-8')
|
280 |
+
image_contents.append({
|
281 |
+
"type": "image_url",
|
282 |
+
"image_url": {
|
283 |
+
"url": f"data:image/jpeg;base64,{base64_image}"
|
284 |
+
}
|
285 |
+
})
|
286 |
+
|
287 |
+
messages = [
|
288 |
+
{
|
289 |
+
"role": "user",
|
290 |
+
"content": [
|
291 |
+
{
|
292 |
+
"type": "text",
|
293 |
+
"text": "Extract the contents of these images in detail in a structured format, focusing on any text, tables, diagrams, or visual elements that might be relevant for document generation."
|
294 |
+
},
|
295 |
+
*image_contents
|
296 |
+
]
|
297 |
+
}
|
298 |
+
]
|
299 |
+
|
300 |
+
image_context = self.ai_client.generate_vision_response(messages)
|
301 |
+
return image_context
|
302 |
+
except Exception as e:
|
303 |
+
print(f"Error processing images: {str(e)}")
|
304 |
+
return ""
|
305 |
+
|
306 |
+
|
307 |
+
class DatabaseManager:
|
308 |
+
"""Manages database operations."""
|
309 |
+
|
310 |
+
def __init__(self):
|
311 |
+
self.db_params = {
|
312 |
+
"dbname": "postgres",
|
313 |
+
"user": os.environ['SUPABASE_USER'],
|
314 |
+
"password": os.environ['SUPABASE_PASSWORD'],
|
315 |
+
"host": "aws-0-us-west-1.pooler.supabase.com",
|
316 |
+
"port": "5432"
|
317 |
+
}
|
318 |
+
|
319 |
+
@log_execution
|
320 |
+
def update_database(self, user_id: str, user_query: str, response: str) -> None:
|
321 |
+
with psycopg2.connect(**self.db_params) as conn:
|
322 |
+
with conn.cursor() as cur:
|
323 |
+
insert_query = """
|
324 |
+
INSERT INTO ai_document_generator (user_id, user_query, response)
|
325 |
+
VALUES (%s, %s, %s);
|
326 |
+
"""
|
327 |
+
cur.execute(insert_query, (user_id, user_query, response))
|
328 |
+
|
329 |
+
class DocumentGenerator:
|
330 |
+
def __init__(self, ai_client: AIClient):
|
331 |
+
self.ai_client = ai_client
|
332 |
+
self.document_outline = None
|
333 |
+
self.content_messages = []
|
334 |
+
|
335 |
+
@staticmethod
|
336 |
+
def extract_between_tags(text: str, tag: str) -> str:
|
337 |
+
pattern = f"<{tag}>(.*?)</{tag}>"
|
338 |
+
match = re.search(pattern, text, re.DOTALL)
|
339 |
+
return match.group(1).strip() if match else ""
|
340 |
+
|
341 |
+
@staticmethod
|
342 |
+
def remove_duplicate_title(content: str, title: str, section_number: str) -> str:
|
343 |
+
patterns = [
|
344 |
+
rf"^#+\s*{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}",
|
345 |
+
rf"^#+\s*{re.escape(title)}",
|
346 |
+
rf"^{re.escape(section_number)}(?:\s+|\s*:\s*|\.\s*){re.escape(title)}",
|
347 |
+
rf"^{re.escape(title)}",
|
348 |
+
]
|
349 |
+
|
350 |
+
for pattern in patterns:
|
351 |
+
content = re.sub(pattern, "", content, flags=re.MULTILINE | re.IGNORECASE)
|
352 |
+
|
353 |
+
return content.lstrip()
|
354 |
+
|
355 |
+
@log_execution
|
356 |
+
def generate_document_outline(self, query: str, template: bool = False, image_context: str = "", max_retries: int = 3) -> Optional[Dict]:
|
357 |
+
messages = [
|
358 |
+
{"role": "system", "content": DOCUMENT_OUTLINE_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_OUTLINE_PROMPT_SYSTEM},
|
359 |
+
{"role": "user", "content": DOCUMENT_OUTLINE_PROMPT_USER.format(query=query) if not template else DOCUMENT_TEMPLATE_PROMPT_USER.format(query=query, image_context=image_context)}
|
360 |
+
]
|
361 |
+
# Update user content to include image context if provided
|
362 |
+
if image_context:
|
363 |
+
messages[1]["content"] += f"<attached_images>\n\n{image_context}\n\n</attached_images>"
|
364 |
+
|
365 |
+
for attempt in range(max_retries):
|
366 |
+
outline_response = self.ai_client.generate_response(messages, model="openai/gpt-4o")
|
367 |
+
outline_json_text = self.extract_between_tags(outline_response, "output")
|
368 |
+
|
369 |
+
try:
|
370 |
+
self.document_outline = json.loads(outline_json_text)
|
371 |
+
return self.document_outline
|
372 |
+
except json.JSONDecodeError as e:
|
373 |
+
if attempt < max_retries - 1:
|
374 |
+
logger.warning(f"Failed to parse JSON (attempt {attempt + 1}): {e}")
|
375 |
+
logger.info("Retrying...")
|
376 |
+
else:
|
377 |
+
logger.error(f"Failed to parse JSON after {max_retries} attempts: {e}")
|
378 |
+
return None
|
379 |
+
|
380 |
+
@log_execution
|
381 |
+
def generate_content(self, title: str, content_instruction: str, section_number: str, template: bool = False) -> str:
|
382 |
+
SECTION_PROMPT_USER = DOCUMENT_SECTION_PROMPT_USER if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_USER
|
383 |
+
self.content_messages.append({
|
384 |
+
"role": "user",
|
385 |
+
"content": SECTION_PROMPT_USER.format(
|
386 |
+
section_or_subsection_title=title,
|
387 |
+
content_instruction=content_instruction
|
388 |
+
)
|
389 |
+
})
|
390 |
+
section_response = self.ai_client.generate_response(self.content_messages)
|
391 |
+
content = self.extract_between_tags(section_response, "response")
|
392 |
+
content = self.remove_duplicate_title(content, title, section_number)
|
393 |
+
self.content_messages.append({
|
394 |
+
"role": "assistant",
|
395 |
+
"content": section_response
|
396 |
+
})
|
397 |
+
return content
|
398 |
+
|
399 |
+
class MarkdownConverter:
|
400 |
+
@staticmethod
|
401 |
+
def slugify(text: str) -> str:
|
402 |
+
return re.sub(r'\W+', '-', text.lower())
|
403 |
+
|
404 |
+
@classmethod
|
405 |
+
def generate_toc(cls, sections: List[Dict]) -> str:
|
406 |
+
toc = "<div style='page-break-before: always;'></div>\n\n"
|
407 |
+
toc += "<h2 style='color: #2c3e50; text-align: center;'>Table of Contents</h2>\n\n"
|
408 |
+
toc += "<nav style='background-color: #f8f9fa; padding: 20px; border-radius: 5px; line-height: 1.6;'>\n\n"
|
409 |
+
for section in sections:
|
410 |
+
section_number = section['SectionNumber']
|
411 |
+
section_title = section['Title']
|
412 |
+
toc += f"<p><a href='#{cls.slugify(section_title)}' style='color: #3498db; text-decoration: none;'>{section_number}. {section_title}</a></p>\n\n"
|
413 |
+
|
414 |
+
for subsection in section.get('Subsections', []):
|
415 |
+
subsection_number = subsection['SectionNumber']
|
416 |
+
subsection_title = subsection['Title']
|
417 |
+
toc += f"<p style='margin-left: 20px;'><a href='#{cls.slugify(subsection_title)}' style='color: #2980b9; text-decoration: none;'>{subsection_number} {subsection_title}</a></p>\n\n"
|
418 |
+
|
419 |
+
toc += "</nav>\n\n"
|
420 |
+
return toc
|
421 |
+
|
422 |
+
@classmethod
|
423 |
+
def convert_to_markdown(cls, document: Dict) -> str:
|
424 |
+
markdown = "<div style='text-align: center; padding-top: 33vh;'>\n\n"
|
425 |
+
markdown += f"<h1 style='color: #2c3e50; border-bottom: 2px solid #3498db; padding-bottom: 10px; display: inline-block;'>{document['Title']}</h1>\n\n"
|
426 |
+
markdown += f"<p style='color: #7f8c8d;'><em>By {document['Author']}</em></p>\n\n"
|
427 |
+
markdown += f"<p style='color: #95a5a6;'>Version {document['Version']} | {document['Date']}</p>\n\n"
|
428 |
+
markdown += "</div>\n\n"
|
429 |
+
|
430 |
+
markdown += cls.generate_toc(document['Sections'])
|
431 |
+
|
432 |
+
markdown += "<div style='max-width: 800px; margin: 0 auto; font-family: \"Segoe UI\", Arial, sans-serif; line-height: 1.6;'>\n\n"
|
433 |
+
|
434 |
+
for section in document['Sections']:
|
435 |
+
markdown += "<div style='page-break-before: always;'></div>\n\n"
|
436 |
+
section_number = section['SectionNumber']
|
437 |
+
section_title = section['Title']
|
438 |
+
markdown += f"<h2 id='{cls.slugify(section_title)}' style='color: #2c3e50; border-bottom: 1px solid #bdc3c7; padding-bottom: 5px;'>{section_number}. {section_title}</h2>\n\n"
|
439 |
+
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{section['Content']}\n\n</div>\n\n"
|
440 |
+
|
441 |
+
for subsection in section.get('Subsections', []):
|
442 |
+
subsection_number = subsection['SectionNumber']
|
443 |
+
subsection_title = subsection['Title']
|
444 |
+
markdown += f"<h3 id='{cls.slugify(subsection_title)}' style='color: #34495e;'>{subsection_number} {subsection_title}</h3>\n\n"
|
445 |
+
markdown += f"<div style='color: #34495e; margin-bottom: 20px;'>\n\n{subsection['Content']}\n\n</div>\n\n"
|
446 |
+
|
447 |
+
markdown += "</div>"
|
448 |
+
return markdown
|
449 |
+
|
450 |
+
router = APIRouter()
|
451 |
+
|
452 |
+
class JsonDocumentResponse(BaseModel):
|
453 |
+
json_document: Dict
|
454 |
+
|
455 |
+
# class JsonDocumentRequest(BaseModel):
|
456 |
+
# query: str
|
457 |
+
# template: bool = False
|
458 |
+
# images: Optional[List[UploadFile]] = File(None)
|
459 |
+
# documents: Optional[List[UploadFile]] = File(None)
|
460 |
+
# conversation_id: str = ""
|
461 |
+
|
462 |
+
class MarkdownDocumentRequest(BaseModel):
|
463 |
+
json_document: Dict
|
464 |
+
query: str
|
465 |
+
|
466 |
+
MESSAGE_DELIMITER = b"\n---DELIMITER---\n"
|
467 |
+
|
468 |
+
def yield_message(message):
|
469 |
+
message_json = json.dumps(message, ensure_ascii=False).encode('utf-8')
|
470 |
+
return message_json + MESSAGE_DELIMITER
|
471 |
+
|
472 |
+
async def generate_document_stream(document_generator: DocumentGenerator, document_outline: Dict, query: str, template: bool = False):
|
473 |
+
document_generator.document_outline = document_outline
|
474 |
+
db_manager = DatabaseManager()
|
475 |
+
overall_objective = query
|
476 |
+
document_layout = json.dumps(document_generator.document_outline, indent=2)
|
477 |
+
|
478 |
+
SECTION_PROMPT_SYSTEM = DOCUMENT_SECTION_PROMPT_SYSTEM if not template else DOCUMENT_TEMPLATE_SECTION_PROMPT_SYSTEM
|
479 |
+
document_generator.content_messages = [
|
480 |
+
{
|
481 |
+
"role": "system",
|
482 |
+
"content": SECTION_PROMPT_SYSTEM.format(
|
483 |
+
overall_objective=overall_objective,
|
484 |
+
document_layout=document_layout
|
485 |
+
)
|
486 |
+
}
|
487 |
+
]
|
488 |
+
|
489 |
+
for section in document_generator.document_outline["Document"].get("Sections", []):
|
490 |
+
section_title = section.get("Title", "")
|
491 |
+
section_number = section.get("SectionNumber", "")
|
492 |
+
content_instruction = section.get("Content", "")
|
493 |
+
logging.info(f"Generating content for section: {section_title}")
|
494 |
+
content = document_generator.generate_content(section_title, content_instruction, section_number, template)
|
495 |
+
section["Content"] = content
|
496 |
+
yield yield_message({
|
497 |
+
"type": "document_section",
|
498 |
+
"content": {
|
499 |
+
"section_number": section_number,
|
500 |
+
"section_title": section_title,
|
501 |
+
"content": content
|
502 |
+
}
|
503 |
+
})
|
504 |
+
|
505 |
+
for subsection in section.get("Subsections", []):
|
506 |
+
subsection_title = subsection.get("Title", "")
|
507 |
+
subsection_number = subsection.get("SectionNumber", "")
|
508 |
+
subsection_content_instruction = subsection.get("Content", "")
|
509 |
+
logging.info(f"Generating content for subsection: {subsection_title}")
|
510 |
+
content = document_generator.generate_content(subsection_title, subsection_content_instruction, subsection_number, template)
|
511 |
+
subsection["Content"] = content
|
512 |
+
yield yield_message({
|
513 |
+
"type": "document_section",
|
514 |
+
"content": {
|
515 |
+
"section_number": subsection_number,
|
516 |
+
"section_title": subsection_title,
|
517 |
+
"content": content
|
518 |
+
}
|
519 |
+
})
|
520 |
+
|
521 |
+
markdown_document = MarkdownConverter.convert_to_markdown(document_generator.document_outline["Document"])
|
522 |
+
|
523 |
+
yield yield_message({
|
524 |
+
"type": "complete_document",
|
525 |
+
"content": {
|
526 |
+
"markdown": markdown_document,
|
527 |
+
"json": document_generator.document_outline
|
528 |
+
},
|
529 |
+
});
|
530 |
+
|
531 |
+
db_manager.update_database("elevatics", query, markdown_document)
|
532 |
+
|
533 |
+
@router.post("/generate-document/markdown-stream")
|
534 |
+
async def generate_markdown_document_stream_endpoint(request: MarkdownDocumentRequest):
|
535 |
+
ai_client = AIClient()
|
536 |
+
document_generator = DocumentGenerator(ai_client)
|
537 |
+
|
538 |
+
async def stream_generator():
|
539 |
+
try:
|
540 |
+
async for chunk in generate_document_stream(document_generator, request.json_document, request.query, request.template):
|
541 |
+
yield chunk
|
542 |
+
except Exception as e:
|
543 |
+
yield yield_message({
|
544 |
+
"type": "error",
|
545 |
+
"content": str(e)
|
546 |
+
})
|
547 |
+
|
548 |
+
return StreamingResponse(stream_generator(), media_type="application/octet-stream")
|
549 |
+
|
550 |
+
|
551 |
+
@cache(expire=600*24*7)
|
552 |
+
@router.post("/generate-document/json", response_model=JsonDocumentResponse)
|
553 |
+
async def generate_document_outline_endpoint(
|
554 |
+
query: str = Form(...),
|
555 |
+
template: bool = Form(False),
|
556 |
+
conversation_id: str = Form(...),
|
557 |
+
images: Optional[List[UploadFile]] = File(None),
|
558 |
+
documents: Optional[List[UploadFile]] = File(None)
|
559 |
+
):
|
560 |
+
ai_client = AIClient()
|
561 |
+
document_generator = DocumentGenerator(ai_client)
|
562 |
+
vision_tools = VisionTools(ai_client)
|
563 |
+
|
564 |
+
try:
|
565 |
+
image_context = ""
|
566 |
+
if images:
|
567 |
+
image_context = await vision_tools.extract_images_info(images)
|
568 |
+
|
569 |
+
json_document = document_generator.generate_document_outline(
|
570 |
+
query,
|
571 |
+
template,
|
572 |
+
image_context=image_context
|
573 |
+
)
|
574 |
+
|
575 |
+
if json_document is None:
|
576 |
+
raise HTTPException(status_code=500, detail="Failed to generate a valid document outline")
|
577 |
+
|
578 |
+
return JsonDocumentResponse(json_document=json_document)
|
579 |
+
except Exception as e:
|
580 |
+
raise HTTPException(status_code=500, detail=str(e))
|
581 |
+
|
582 |
+
|
583 |
+
|
584 |
+
## OBSERVABILITY
|
585 |
+
from uuid import uuid4
|
586 |
+
import csv
|
587 |
+
from io import StringIO
|
588 |
+
|
589 |
+
class ObservationResponse(BaseModel):
|
590 |
+
observations: List[Dict]
|
591 |
+
|
592 |
+
def create_csv_response(observations: List[Dict]) -> StreamingResponse:
|
593 |
+
def iter_csv(data):
|
594 |
+
output = StringIO()
|
595 |
+
writer = csv.DictWriter(output, fieldnames=data[0].keys() if data else [])
|
596 |
+
writer.writeheader()
|
597 |
+
for row in data:
|
598 |
+
writer.writerow(row)
|
599 |
+
output.seek(0)
|
600 |
+
yield output.read()
|
601 |
+
|
602 |
+
headers = {
|
603 |
+
'Content-Disposition': 'attachment; filename="observations.csv"'
|
604 |
+
}
|
605 |
+
return StreamingResponse(iter_csv(observations), media_type="text/csv", headers=headers)
|
606 |
+
|
607 |
+
|
608 |
+
@router.get("/last-observations/{limit}")
|
609 |
+
async def get_last_observations(limit: int = 10, format: str = "json"):
|
610 |
+
observability_manager = LLMObservabilityManager()
|
611 |
+
|
612 |
+
try:
|
613 |
+
# Get all observations, sorted by created_at in descending order
|
614 |
+
all_observations = observability_manager.get_observations()
|
615 |
+
all_observations.sort(key=lambda x: x['created_at'], reverse=True)
|
616 |
+
|
617 |
+
# Get the last conversation_id
|
618 |
+
if all_observations:
|
619 |
+
last_conversation_id = all_observations[0]['conversation_id']
|
620 |
+
|
621 |
+
# Filter observations for the last conversation
|
622 |
+
last_conversation_observations = [
|
623 |
+
obs for obs in all_observations
|
624 |
+
if obs['conversation_id'] == last_conversation_id
|
625 |
+
][:limit]
|
626 |
+
|
627 |
+
if format.lower() == "csv":
|
628 |
+
return create_csv_response(last_conversation_observations)
|
629 |
+
else:
|
630 |
+
return ObservationResponse(observations=last_conversation_observations)
|
631 |
+
else:
|
632 |
+
if format.lower() == "csv":
|
633 |
+
return create_csv_response([])
|
634 |
+
else:
|
635 |
+
return ObservationResponse(observations=[])
|
636 |
+
except Exception as e:
|
637 |
+
raise HTTPException(status_code=500, detail=f"Failed to retrieve observations: {str(e)}")
|
638 |
+
|
639 |
+
|