pvanand commited on
Commit
26b976d
·
verified ·
1 Parent(s): d143039

Delete helper_functions_api.py

Browse files
Files changed (1) hide show
  1. helper_functions_api.py +0 -324
helper_functions_api.py DELETED
@@ -1,324 +0,0 @@
1
- import mistune
2
- from mistune.plugins.table import table
3
- from jinja2 import Template
4
- import re
5
- import os
6
- import hrequests
7
- import markdown
8
- from bs4 import BeautifulSoup
9
- from lxml import etree
10
- import markdown
11
- import logging
12
- from datetime import datetime
13
- import psycopg2
14
- from dotenv import load_dotenv
15
- import ast
16
- from fpdf import FPDF
17
- import pandas as pd
18
- import nltk
19
- import requests
20
- import json
21
- from retry import retry
22
- from concurrent.futures import ThreadPoolExecutor, as_completed
23
- from nltk.corpus import stopwords
24
- from nltk.tokenize import word_tokenize
25
- from brave import Brave
26
- from fuzzy_json import loads
27
- from half_json.core import JSONFixer
28
- from openai import OpenAI
29
- from together import Together
30
- from urllib.parse import urlparse
31
- import trafilatura
32
- import tiktoken
33
-
34
- # Set up logging
35
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
36
-
37
- # Load environment variables
38
- load_dotenv("keys.env")
39
- TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY')
40
- BRAVE_API_KEY = os.getenv('BRAVE_API_KEY')
41
- GROQ_API_KEY = os.getenv("GROQ_API_KEY")
42
- HELICON_API_KEY = os.getenv("HELICON_API_KEY")
43
- SUPABASE_USER = os.environ['SUPABASE_USER']
44
- SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD']
45
- OPENROUTER_API_KEY = "sk-or-v1-" + os.environ['OPENROUTER_API_KEY']
46
-
47
- # Define constants
48
- LLM_DEFAULT_SMALL = "llama3-8b-8192"
49
- LLM_DEFAULT_MEDIUM = "llama3-70b-8192"
50
- LLM_FALLBACK_SMALL = "meta-llama/Llama-3-8b-chat-hf"
51
- LLM_FALLBACK_MEDIUM = "meta-llama/Llama-3-70b-chat-hf"
52
-
53
- SYS_PROMPT_DATA = """
54
- You are an AI assistant tasked with extracting relevant information from scraped website data based on a given query. Your goal is to provide accurate and concise information that directly relates to the query, using only the data provided.
55
- Guidelines for extraction:
56
- 1. Only use information present in the scraped data.
57
- 2. Focus on extracting facts, tables, and direct quotes that are relevant to the query.
58
- 3. If there is no relevant information in the scraped data, state that clearly.
59
- 4. Do not make assumptions or add information not present in the data.
60
- 5. If the query is ambiguous, interpret it in the most reasonable way based on the available data.
61
- """
62
-
63
- SYS_PROMPT_DEFAULT = "You are an expert AI, complete the given task. Do not add any additional comments."
64
- SYS_PROMPT_SEARCH = """You are a search query generator, create a concise Google search query, focusing only on the main topic and omitting additional redundant details, include year if necessary, 2024, Do not add any additional comments. OUTPUT ONLY THE SEARCH QUERY
65
- #Additional instructions:
66
- ##Use the following search operator if necessary
67
- OR #to cover multiple topics"""
68
-
69
- # Initialize API clients
70
- encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
71
-
72
- together_client = OpenAI(
73
- api_key=TOGETHER_API_KEY,
74
- base_url="https://together.hconeai.com/v1",
75
- default_headers={"Helicone-Auth": f"Bearer {HELICON_API_KEY}"})
76
-
77
- groq_client = OpenAI(
78
- api_key=GROQ_API_KEY,
79
- base_url="https://groq.hconeai.com/openai/v1",
80
- default_headers={"Helicone-Auth": f"Bearer {HELICON_API_KEY}"})
81
-
82
- or_client = OpenAI(
83
- base_url="https://openrouter.ai/api/v1",
84
- api_key=OPENROUTER_API_KEY)
85
-
86
- def md_to_html(md_text):
87
- try:
88
- html_content = markdown.markdown(md_text, extensions=["extra"])
89
- return html_content.replace('\n', '')
90
- except Exception as e:
91
- logging.error(f"Error converting markdown to HTML: {e}")
92
- return md_text
93
-
94
- def has_tables(html_string):
95
- try:
96
- soup = BeautifulSoup(html_string, 'lxml')
97
- if soup.find_all('table'):
98
- return True
99
- tree = etree.HTML(str(soup))
100
- return len(tree.xpath('//table')) > 0
101
- except Exception as e:
102
- logging.error(f"Error checking for tables: {e}")
103
- return False
104
-
105
- def extract_data_from_tag(input_string, tag):
106
- try:
107
- pattern = f'<{tag}.*?>(.*?)</{tag}>'
108
- matches = re.findall(pattern, input_string, re.DOTALL)
109
- if matches:
110
- out = '\n'.join(match.strip() for match in matches)
111
- return out if len(out) <= 0.8 * len(input_string) else input_string
112
- return input_string
113
- except Exception as e:
114
- logging.error(f"Error extracting data from tag: {e}")
115
- return input_string
116
-
117
- def insert_data(user_id, user_query, subtopic_query, response, html_report):
118
- try:
119
- with psycopg2.connect(
120
- dbname="postgres",
121
- user=SUPABASE_USER,
122
- password=SUPABASE_PASSWORD,
123
- host="aws-0-us-west-1.pooler.supabase.com",
124
- port="5432"
125
- ) as conn:
126
- with conn.cursor() as cur:
127
- insert_query = """
128
- INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at)
129
- VALUES (%s, %s, %s, %s, %s, %s);
130
- """
131
- cur.execute(insert_query, (user_id, user_query, subtopic_query, response, html_report, datetime.now()))
132
- except Exception as e:
133
- logging.error(f"Error inserting data into database: {e}")
134
-
135
- def limit_tokens(input_string, token_limit=7500):
136
- try:
137
- return encoding.decode(encoding.encode(input_string)[:token_limit])
138
- except Exception as e:
139
- logging.error(f"Error limiting tokens: {e}")
140
- return input_string[:token_limit] # Fallback to simple string slicing
141
-
142
- def together_response(message, model=LLM_DEFAULT_SMALL, SysPrompt=SYS_PROMPT_DEFAULT, temperature=0.2, frequency_penalty=0.1, max_tokens=2000):
143
- messages = [{"role": "system", "content": SysPrompt}, {"role": "user", "content": message}]
144
- params = {
145
- "model": model,
146
- "messages": messages,
147
- "temperature": temperature,
148
- "frequency_penalty": frequency_penalty,
149
- "max_tokens": max_tokens
150
- }
151
- try:
152
- response = groq_client.chat.completions.create(**params)
153
- return response.choices[0].message.content
154
- except Exception as e:
155
- logging.error(f"Error calling GROQ API: {e}")
156
- try:
157
- params["model"] = LLM_FALLBACK_SMALL if model == LLM_DEFAULT_SMALL else LLM_FALLBACK_MEDIUM
158
- response = together_client.chat.completions.create(**params)
159
- return response.choices[0].message.content
160
- except Exception as e:
161
- logging.error(f"Error calling Together API: {e}")
162
- return "An error occurred while processing your request."
163
-
164
- def openrouter_response(messages, model="meta-llama/llama-3-70b-instruct:nitro"):
165
- try:
166
- response = or_client.chat.completions.create(
167
- model=model,
168
- messages=messages,
169
- max_tokens=4096,
170
- )
171
- return response.choices[0].message.content
172
- except Exception as e:
173
- logging.error(f"Error calling OpenRouter API: {e}")
174
- return None
175
-
176
- def openrouter_response_stream(messages, model="meta-llama/llama-3-70b-instruct:nitro"):
177
- try:
178
- response = or_client.chat.completions.create(
179
- model=model,
180
- messages=messages,
181
- max_tokens=4096,
182
- stream=True
183
- )
184
- for chunk in response:
185
- if chunk.choices[0].delta.content is not None:
186
- yield chunk.choices[0].delta.content
187
- except Exception as e:
188
- logging.error(f"Error streaming response from OpenRouter API: {e}")
189
- yield "An error occurred while streaming the response."
190
-
191
- def json_from_text(text):
192
- try:
193
- return json.loads(text)
194
- except json.JSONDecodeError:
195
- try:
196
- match = re.search(r'\{[\s\S]*\}', text)
197
- json_out = match.group(0) if match else text
198
- return loads(json_out)
199
- except Exception as e:
200
- logging.error(f"Error parsing JSON from text: {e}")
201
- return {}
202
-
203
- def remove_stopwords(text):
204
- try:
205
- stop_words = set(stopwords.words('english'))
206
- words = word_tokenize(text)
207
- filtered_text = [word for word in words if word.lower() not in stop_words]
208
- return ' '.join(filtered_text)
209
- except Exception as e:
210
- logging.error(f"Error removing stopwords: {e}")
211
- return text
212
-
213
- def rephrase_content(data_format, content, query):
214
- try:
215
- if data_format == "Structured data":
216
- return together_response(
217
- f"""return only the relevant information regarding the query: {{{query}}}. Output should be concise chunks of \
218
- paragraphs or tables or both, extracted from the following scraped context {{{limit_tokens(content,token_limit=2000)}}}""",
219
- SysPrompt=SYS_PROMPT_DATA,
220
- max_tokens=900,
221
- )
222
- elif data_format == "Quantitative data":
223
- return together_response(
224
- f"return only the numerical or quantitative data regarding the query: {{{query}}} structured into .md tables, using the scraped context:{{{limit_tokens(content,token_limit=2000)}}}",
225
- SysPrompt=SYS_PROMPT_DATA,
226
- max_tokens=500,
227
- )
228
- else:
229
- return together_response(
230
- f"return only the relevant information regarding the query: {{{query}}} using the scraped context:{{{limit_tokens(content,token_limit=2000)}}}",
231
- SysPrompt=SYS_PROMPT_DATA,
232
- max_tokens=500,
233
- )
234
- except Exception as e:
235
- logging.error(f"Error rephrasing content: {e}")
236
- return limit_tokens(content, token_limit=500)
237
-
238
- def fetch_content(url):
239
- try:
240
- response = hrequests.get(url, timeout=5)
241
- if response.status_code == 200:
242
- return response.text
243
- else:
244
- logging.warning(f"Failed to fetch content from {url}. Status code: {response.status_code}")
245
- except Exception as e:
246
- logging.error(f"Error fetching page content for {url}: {e}")
247
- return None
248
-
249
- def extract_main_content(html):
250
- try:
251
- extracted = trafilatura.extract(
252
- html,
253
- output_format="markdown",
254
- target_language="en",
255
- include_tables=True,
256
- include_images=False,
257
- include_links=False,
258
- deduplicate=True,
259
- )
260
- return trafilatura.utils.sanitize(extracted) if extracted else ""
261
- except Exception as e:
262
- logging.error(f"Error extracting main content: {e}")
263
- return ""
264
-
265
- def process_content(data_format, url, query):
266
- try:
267
- html_content = fetch_content(url)
268
- if html_content:
269
- content = extract_main_content(html_content)
270
- if content:
271
- rephrased_content = rephrase_content(
272
- data_format=data_format,
273
- content=limit_tokens(remove_stopwords(content), token_limit=4000),
274
- query=query,
275
- )
276
- return rephrased_content, url
277
- except Exception as e:
278
- logging.error(f"Error processing content for {url}: {e}")
279
- return "", url
280
-
281
- def fetch_and_extract_content(data_format, urls, query):
282
- try:
283
- with ThreadPoolExecutor(max_workers=len(urls)) as executor:
284
- future_to_url = {
285
- executor.submit(process_content, data_format, url, query): url
286
- for url in urls
287
- }
288
- all_text_with_urls = [future.result() for future in as_completed(future_to_url)]
289
- return all_text_with_urls
290
- except Exception as e:
291
- logging.error(f"Error fetching and extracting content: {e}")
292
- return []
293
-
294
- def search_brave(query, num_results=5):
295
- try:
296
- cleaned_query = query
297
- search_query = together_response(cleaned_query, model=LLM_DEFAULT_SMALL, SysPrompt=SYS_PROMPT_SEARCH, max_tokens=25).strip()
298
- cleaned_search_query = re.sub(r'[^\w\s]', '', search_query).strip()
299
-
300
- url = "https://api.search.brave.com/res/v1/web/search"
301
- headers = {
302
- "Accept": "application/json",
303
- "Accept-Encoding": "gzip",
304
- "X-Subscription-Token": BRAVE_API_KEY
305
- }
306
- params = {"q": cleaned_search_query}
307
-
308
- response = requests.get(url, headers=headers, params=params)
309
-
310
- if response.status_code == 200:
311
- result = response.json()
312
- return [item["url"] for item in result["web"]["results"]][:num_results], cleaned_search_query, result
313
- else:
314
- logging.warning(f"Brave search API returned status code {response.status_code}")
315
- return [], cleaned_search_query, None
316
- except Exception as e:
317
- logging.error(f"Error in Brave search: {e}")
318
- return [], query, None
319
-
320
- # Main execution
321
- if __name__ == "__main__":
322
- logging.info("Script started")
323
- # Add your main execution logic here
324
- logging.info("Script completed")