Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -281,6 +281,53 @@ async def news_assistant(query: NewsQueryModel, api_key: str = Depends(verify_ap
|
|
281 |
#meta-llama/llama-3-70b-instruct google/gemini-pro-1.5
|
282 |
return StreamingResponse(process_response(), media_type="text/event-stream")
|
283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
if __name__ == "__main__":
|
285 |
import uvicorn
|
286 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
281 |
#meta-llama/llama-3-70b-instruct google/gemini-pro-1.5
|
282 |
return StreamingResponse(process_response(), media_type="text/event-stream")
|
283 |
|
284 |
+
class SearchQueryModel(BaseModel):
|
285 |
+
query: str = Field(..., description="Search query")
|
286 |
+
model_id: ModelID = Field(
|
287 |
+
default="meta-llama/llama-3-70b-instruct",
|
288 |
+
description="ID of the model to use for response generation"
|
289 |
+
)
|
290 |
+
class Config:
|
291 |
+
schema_extra = {
|
292 |
+
"example": {
|
293 |
+
"query": "What are the latest advancements in quantum computing?",
|
294 |
+
"model_id": "meta-llama/llama-3-70b-instruct"
|
295 |
+
}
|
296 |
+
}
|
297 |
+
|
298 |
+
def analyze_search_results(query):
|
299 |
+
search_data = internet_search(query, type="web")
|
300 |
+
|
301 |
+
if not search_data:
|
302 |
+
return "Failed to fetch search data.", []
|
303 |
+
|
304 |
+
# Prepare the prompt for the AI
|
305 |
+
prompt = generate_search_prompt(query, search_data)
|
306 |
+
|
307 |
+
messages = [
|
308 |
+
{"role": "system", "content": SEARCH_ASSISTANT_PROMPT},
|
309 |
+
{"role": "user", "content": prompt}
|
310 |
+
]
|
311 |
+
|
312 |
+
return messages
|
313 |
+
|
314 |
+
@app.post("/search-assistant")
|
315 |
+
async def search_assistant(query: SearchQueryModel, api_key: str = Depends(verify_api_key)):
|
316 |
+
"""
|
317 |
+
Search assistant endpoint that provides summaries and analysis of web search results based on user queries.
|
318 |
+
Requires API Key authentication via X-API-Key header.
|
319 |
+
"""
|
320 |
+
messages = analyze_search_results(query.query)
|
321 |
+
|
322 |
+
if not messages:
|
323 |
+
raise HTTPException(status_code=500, detail="Failed to fetch search data")
|
324 |
+
|
325 |
+
def process_response():
|
326 |
+
for content in chat_with_llama_stream(messages, model=query.model_id):
|
327 |
+
yield content
|
328 |
+
|
329 |
+
return StreamingResponse(process_response(), media_type="text/event-stream")
|
330 |
+
|
331 |
if __name__ == "__main__":
|
332 |
import uvicorn
|
333 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|