from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks from fastapi.security import APIKeyHeader from fastapi.responses import StreamingResponse from pydantic import BaseModel, Field from typing import Literal, List, Dict import os from functools import lru_cache from openai import OpenAI from uuid import uuid4 import tiktoken import sqlite3 import time from datetime import datetime, timedelta import asyncio import requests app = FastAPI() API_KEY_NAME = "X-API-Key" API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key") api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False) ModelID = Literal[ "meta-llama/llama-3-70b-instruct", "anthropic/claude-3.5-sonnet", "deepseek/deepseek-coder", "anthropic/claude-3-haiku", "openai/gpt-3.5-turbo-instruct", "qwen/qwen-72b-chat", "google/gemma-2-27b-it" ] class QueryModel(BaseModel): user_query: str = Field(..., description="User's coding query") model_id: ModelID = Field( default="meta-llama/llama-3-70b-instruct", description="ID of the model to use for response generation" ) conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation") user_id: str = Field(..., description="Unique identifier for the user") class Config: schema_extra = { "example": { "user_query": "How do I implement a binary search in Python?", "model_id": "meta-llama/llama-3-70b-instruct", "conversation_id": "123e4567-e89b-12d3-a456-426614174000", "user_id": "user123" } } class NewsQueryModel(BaseModel): query: str = Field(..., description="News topic to search for") class Config: schema_extra = { "example": { "query": "Latest developments in AI" } } @lru_cache() def get_api_keys(): return { "OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}", "BRAVE_API_KEY": os.environ['BRAVE_API_KEY'] } api_keys = get_api_keys() or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1") # In-memory storage for conversations conversations: Dict[str, List[Dict[str, str]]] = {} last_activity: Dict[str, float] = {} # Token encoding encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") def limit_tokens(input_string, token_limit=6000): return encoding.decode(encoding.encode(input_string)[:token_limit]) def calculate_tokens(msgs): return sum(len(encoding.encode(str(m))) for m in msgs) def chat_with_llama_stream(messages, model="gpt-3.5-turbo", max_llm_history=4, max_output_tokens=2500): while calculate_tokens(messages) > (8000 - max_output_tokens): if len(messages) > max_llm_history: messages = [messages[0]] + messages[-max_llm_history:] else: max_llm_history -= 1 if max_llm_history < 2: error_message = "Token limit exceeded. Please shorten your input or start a new conversation." raise HTTPException(status_code=400, detail=error_message) try: response = or_client.chat.completions.create( model=model, messages=messages, max_tokens=max_output_tokens, stream=True ) full_response = "" for chunk in response: if chunk.choices[0].delta.content is not None: content = chunk.choices[0].delta.content full_response += content yield content # After streaming, add the full response to the conversation history messages.append({"role": "assistant", "content": full_response}) except Exception as e: raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}") async def verify_api_key(api_key: str = Security(api_key_header)): if api_key != API_KEY: raise HTTPException(status_code=403, detail="Could not validate credentials") return api_key # SQLite setup DB_PATH = '/app/data/conversations.db' def init_db(): os.makedirs(os.path.dirname(DB_PATH), exist_ok=True) conn = sqlite3.connect(DB_PATH) c = conn.cursor() c.execute('''CREATE TABLE IF NOT EXISTS conversations (id INTEGER PRIMARY KEY AUTOINCREMENT, user_id TEXT, conversation_id TEXT, message TEXT, response TEXT, timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''') conn.commit() conn.close() init_db() def update_db(user_id, conversation_id, message, response): conn = sqlite3.connect(DB_PATH) c = conn.cursor() c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response) VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response)) conn.commit() conn.close() async def clear_inactive_conversations(): while True: current_time = time.time() inactive_convos = [conv_id for conv_id, last_time in last_activity.items() if current_time - last_time > 1800] # 30 minutes for conv_id in inactive_convos: if conv_id in conversations: del conversations[conv_id] if conv_id in last_activity: del last_activity[conv_id] await asyncio.sleep(60) # Check every minute @app.on_event("startup") async def startup_event(): asyncio.create_task(clear_inactive_conversations()) @app.post("/coding-assistant") async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)): """ Coding assistant endpoint that provides programming help based on user queries. Available models: - meta-llama/llama-3-70b-instruct (default) - anthropic/claude-3.5-sonnet - deepseek/deepseek-coder - anthropic/claude-3-haiku - openai/gpt-3.5-turbo-instruct - qwen/qwen-72b-chat - google/gemma-2-27b-it Requires API Key authentication via X-API-Key header. """ if query.conversation_id not in conversations: conversations[query.conversation_id] = [ {"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."} ] conversations[query.conversation_id].append({"role": "user", "content": query.user_query}) last_activity[query.conversation_id] = time.time() # Limit tokens in the conversation history limited_conversation = conversations[query.conversation_id] def process_response(): full_response = "" for content in chat_with_llama_stream(limited_conversation, model=query.model_id): full_response += content yield content background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response) return StreamingResponse(process_response(), media_type="text/event-stream") # New functions for news assistant def fetch_news(query, num_results=20): url = "https://api.search.brave.com/res/v1/news/search" headers = { "Accept": "application/json", "Accept-Encoding": "gzip", "X-Subscription-Token": api_keys["BRAVE_API_KEY"] } params = {"q": query} response = requests.get(url, headers=headers, params=params) if response.status_code == 200: news_data = response.json() return [ { "title": item["title"], "snippet": item["extra_snippets"][0] if "extra_snippets" in item and item["extra_snippets"] else "", "last_updated": item.get("age", ""), } for item in news_data['results'] if "extra_snippets" in item and item["extra_snippets"] ][:num_results] else: return [] def analyze_news(query): news_data = fetch_news(query) if not news_data: return "Failed to fetch news data.", [] # Prepare the prompt for the AI prompt = f"Based on the following recent news about '{query}', Provide a well summarized and formatted answer using markdown, give importance to the latest news:\n\n" for item in news_data: prompt += f"Title: {item['title']}\n" prompt += f"Snippet: {item['snippet']}\n" prompt += f"Last Updated: {item['last_updated']}\n\n" messages = [ {"role": "system", "content": "You are a knowledgeable Assistant capable of providing insightful answers on various topics."}, {"role": "user", "content": prompt} ] return messages @app.post("/news-assistant") async def news_assistant(query: NewsQueryModel, api_key: str = Depends(verify_api_key)): """ News assistant endpoint that provides summaries and analysis of recent news based on user queries. Requires API Key authentication via X-API-Key header. """ messages = analyze_news(query.query) if not messages: raise HTTPException(status_code=500, detail="Failed to fetch news data") def process_response(): for content in chat_with_llama_stream(messages, model="google/gemini-pro-1.5"): yield content return StreamingResponse(process_response(), media_type="text/event-stream") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)