# !pip install mistune import mistune from mistune.plugins.table import table from jinja2 import Template import re import os import hrequests import markdown from bs4 import BeautifulSoup from lxml import etree import markdown def md_to_html(md_text): html_content = markdown.markdown(md_text,extensions=["extra"]) return html_content.replace('\n', '') def has_tables(html_string): try: # Use BeautifulSoup with lxml parser soup = BeautifulSoup(html_string, 'lxml') # First, try BeautifulSoup's find_all method if soup.find_all('table'): return True # If no tables found, try a more aggressive search using lxml's XPath tree = etree.HTML(str(soup)) return len(tree.xpath('//table')) > 0 except Exception as e: # Log the exception if needed print(f"An error occurred: {str(e)}") return False def extract_data_from_tag(input_string, tag): # Create the regex pattern pattern = f'<{tag}.*?>(.*?)' # Find all matches matches = re.findall(pattern, input_string, re.DOTALL) # If matches are found, return them joined by newlines if matches: out = '\n'.join(match.strip() for match in matches) # Check for incorrect tagging if len(out) > 0.8*len(input_string): return out else: return input_string # If no matches are found, return the original string return input_string ####------------------------------ OPTIONAL--> User id and persistant data storage-------------------------------------#### from datetime import datetime import psycopg2 from dotenv import load_dotenv, find_dotenv # Load environment variables from .env file load_dotenv("keys.env") TOGETHER_API_KEY = os.getenv('TOGETHER_API_KEY') BRAVE_API_KEY = os.getenv('BRAVE_API_KEY') GROQ_API_KEY = os.getenv("GROQ_API_KEY") HELICON_API_KEY = os.getenv("HELICON_API_KEY") SUPABASE_USER = os.environ['SUPABASE_USER'] SUPABASE_PASSWORD = os.environ['SUPABASE_PASSWORD'] OPENROUTER_API_KEY = "sk-or-v1-"+os.environ['OPENROUTER_API_KEY'] def insert_data(user_id, user_query, subtopic_query, response, html_report): # Connect to your database conn = psycopg2.connect( dbname="postgres", user=SUPABASE_USER, password=SUPABASE_PASSWORD, host="aws-0-us-west-1.pooler.supabase.com", port="5432" ) cur = conn.cursor() insert_query = """ INSERT INTO research_pro_chat_v2 (user_id, user_query, subtopic_query, response, html_report, created_at) VALUES (%s, %s, %s, %s, %s, %s); """ cur.execute(insert_query, (user_id,user_query, subtopic_query, response, html_report, datetime.now())) conn.commit() cur.close() conn.close() ####-----------------------------------------------------END----------------------------------------------------------#### import ast from fpdf import FPDF import re import pandas as pd import nltk import requests import json from retry import retry from concurrent.futures import ThreadPoolExecutor, as_completed from bs4 import BeautifulSoup from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from brave import Brave from fuzzy_json import loads from half_json.core import JSONFixer from openai import OpenAI from together import Together from urllib.parse import urlparse import trafilatura llm_default_small = "meta-llama/Llama-3-8b-chat-hf" llm_default_medium = "meta-llama/Llama-3-70b-chat-hf" # SysPromptData = """You are expert in information extraction from the given context. # Steps to follow: # 1. Check if relevant factual data regarding is present in the . # - IF YES, extract the maximum relevant factual information related to from the . # - IF NO, then return "N/A" # Rules to follow: # - Return N/A if information is not present in the scraped data. # - FORGET EVERYTHING YOU KNOW, Only output information that is present in the scraped data, DO NOT MAKE UP INFORMATION # """ SysPromptData = """ You are an AI assistant tasked with extracting relevant information from scraped website data based on a given query. Your goal is to provide accurate and concise information that directly relates to the query, using only the data provided. Guidelines for extraction: 1. Only use information present in the scraped data. 2. Focus on extracting facts, tables, and direct quotes that are relevant to the query. 3. If there is no relevant information in the scraped data, state that clearly. 4. Do not make assumptions or add information not present in the data. 5. If the query is ambiguous, interpret it in the most reasonable way based on the available data. """ SysPromptDefault = "You are an expert AI, complete the given task. Do not add any additional comments." SysPromptSearch = """You are a search query generator, create a concise Google search query, focusing only on the main topic and omitting additional redundant details, include year if necessory, 2024, Do not add any additional comments. OUTPUT ONLY THE SEARCH QUERY #Additional instructions: ##Use the following search operator if necessory OR #to cover multiple topics""" import tiktoken # Used to limit tokens encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") # Instead of Llama3 using available option/ replace if found anything better def limit_tokens(input_string, token_limit=7500): """ Limit tokens sent to the model """ return encoding.decode(encoding.encode(input_string)[:token_limit]) together_client = OpenAI( api_key=TOGETHER_API_KEY, base_url="https://together.hconeai.com/v1", default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"}) groq_client = OpenAI( api_key=GROQ_API_KEY, base_url="https://groq.hconeai.com/openai/v1", default_headers={ "Helicone-Auth": f"Bearer {HELICON_API_KEY}"}) or_client = OpenAI( base_url="https://openrouter.ai/api/v1", api_key=OPENROUTER_API_KEY) # Groq model names llm_default_small = "llama3-8b-8192" llm_default_medium = "llama3-70b-8192" # Together Model names (fallback) llm_fallback_small = "meta-llama/Llama-3-8b-chat-hf" llm_fallback_medium = "meta-llama/Llama-3-70b-chat-hf" ### ------END OF LLM CONFIG-------- ### def together_response(message, model = llm_default_small, SysPrompt = SysPromptDefault, temperature=0.2, frequency_penalty =0.1, max_tokens= 2000): messages=[{"role": "system", "content": SysPrompt},{"role": "user", "content": message}] params = { "model": model, "messages": messages, "temperature": temperature, "frequency_penalty": frequency_penalty, "max_tokens": max_tokens } try: response = groq_client.chat.completions.create(**params) return response.choices[0].message.content except Exception as e: print(f"Error calling GROQ API: {e}") params["model"] = llm_fallback_small if model == llm_default_small else llm_fallback_medium response = together_client.chat.completions.create(**params) return response.choices[0].message.content def openrouter_response(messages, model="meta-llama/llama-3-70b-instruct:nitro"): try: response = or_client.chat.completions.create( model=model, messages=messages, max_tokens=4096, ) response_message = response.choices[0].message.content return response_message except Exception as e: print(f"An error occurred: {str(e)}") return None def json_from_text(text): """ Extracts JSON from text using regex and fuzzy JSON loading. """ try: return json.loads(text) except: match = re.search(r'\{[\s\S]*\}', text) if match: json_out = match.group(0) else: json_out = text # Use Fuzzy JSON loading return loads(json_out) def remove_stopwords(text): stop_words = set(stopwords.words('english')) words = word_tokenize(text) filtered_text = [word for word in words if word.lower() not in stop_words] return ' '.join(filtered_text) def rephrase_content(data_format, content, query): try: if data_format == "Structured data": return together_response( f"""return only the relevant information regarding the query: {{{query}}}. Output should be concise chunks of \ paragraphs or tables or both, extracted from the following scraped context {{{limit_tokens(content,token_limit=2000)}}}""", SysPrompt=SysPromptData, max_tokens=900, ) elif data_format == "Quantitative data": return together_response( f"return only the numerical or quantitative data regarding the query: {{{query}}} structured into .md tables, using the scraped context:{{{limit_tokens(content,token_limit=2000)}}}", SysPrompt=SysPromptData, max_tokens=500, ) else: return together_response( f"return only the relevant information regarding the query: {{{query}}} using the scraped context:{{{limit_tokens(content,token_limit=2000)}}}", SysPrompt=SysPromptData, max_tokens=500, ) except Exception as e: print(f"An error occurred: {str(e)}") return limit_tokens(content,token_limit=500) def fetch_content(url): try: response = hrequests.get(url, timeout=5) if response.status_code == 200: return response.text except Exception as e: print(f"Error fetching page content for {url}: {e}") return None def extract_main_content(html): extracted = trafilatura.extract( html, output_format="markdown", target_language="en", include_tables=True, include_images=False, include_links=False, deduplicate=True, ) if extracted: return trafilatura.utils.sanitize(extracted) else: return "" def process_content(data_format, url, query): html_content = fetch_content(url) if html_content: content = extract_main_content(html_content) if content: rephrased_content = rephrase_content( data_format=data_format, content=limit_tokens(remove_stopwords(content), token_limit=4000), query=query, ) return rephrased_content, url return "", url def fetch_and_extract_content(data_format, urls, query): with ThreadPoolExecutor(max_workers=len(urls)) as executor: future_to_url = { executor.submit(process_content, data_format, url, query): url for url in urls } all_text_with_urls = [future.result() for future in as_completed(future_to_url)] return all_text_with_urls def search_brave(query, num_results=5): """Fetch search results from Brave's API.""" cleaned_query = query #re.sub(r'[^a-zA-Z0-9]+', '', query) search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip() cleaned_search_query = re.sub(r'[^\w\s]', '', search_query).strip() #re.sub(r'[^a-zA-Z0-9*]+', '', search_query) url = "https://api.search.brave.com/res/v1/web/search" headers = { "Accept": "application/json", "Accept-Encoding": "gzip", "X-Subscription-Token": BRAVE_API_KEY } params = {"q": cleaned_search_query} response = requests.get(url, headers=headers, params=params) if response.status_code == 200: result = response.json() # Return the JSON response if successful return [item["url"] for item in result["web"]["results"]][:num_results],cleaned_search_query, result else: return [],cleaned_search_query # Return error code if not successful # #@retry(tries=3, delay=0.25) # def search_brave(query, num_results=5): # cleaned_query = query #re.sub(r'[^a-zA-Z0-9]+', '', query) # search_query = together_response(cleaned_query, model=llm_default_small, SysPrompt=SysPromptSearch, max_tokens = 25).strip() # cleaned_search_query = re.sub(r'[^\w\s]', '', search_query).strip() #re.sub(r'[^a-zA-Z0-9*]+', '', search_query) # brave = Brave(BRAVE_API_KEY) # search_results = brave.search(q=cleaned_search_query, count=num_results) # return [url.__str__() for url in search_results.urls],cleaned_search_query