from fastapi import FastAPI, HTTPException, Depends, Security, BackgroundTasks from fastapi.security import APIKeyHeader from fastapi.responses import StreamingResponse from pydantic import BaseModel, Field from typing import Literal, List, Dict import os from functools import lru_cache from openai import OpenAI from uuid import uuid4 import tiktoken import sqlite3 import time from datetime import datetime, timedelta import asyncio import requests from prompts import * from fastapi_cache import FastAPICache from fastapi_cache.backends.inmemory import InMemoryBackend from fastapi_cache.decorator import cache import logging # Configure logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler("app.log"), logging.StreamHandler() ] ) logger = logging.getLogger(__name__) app = FastAPI() API_KEY_NAME = "X-API-Key" API_KEY = os.environ.get("CHAT_AUTH_KEY", "default_secret_key") api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False) ModelID = Literal[ "openai/gpt-4o-mini", "meta-llama/llama-3-70b-instruct", "anthropic/claude-3.5-sonnet", "deepseek/deepseek-coder", "anthropic/claude-3-haiku", "openai/gpt-3.5-turbo-instruct", "qwen/qwen-72b-chat", "google/gemma-2-27b-it" ] class QueryModel(BaseModel): user_query: str = Field(..., description="User's coding query") model_id: ModelID = Field( default="meta-llama/llama-3-70b-instruct", description="ID of the model to use for response generation" ) conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation") user_id: str = Field(..., description="Unique identifier for the user") class Config: schema_extra = { "example": { "user_query": "How do I implement a binary search in Python?", "model_id": "meta-llama/llama-3-70b-instruct", "conversation_id": "123e4567-e89b-12d3-a456-426614174000", "user_id": "user123" } } class NewsQueryModel(BaseModel): query: str = Field(..., description="News topic to search for") model_id: ModelID = Field( default="openai/gpt-4o-mini", description="ID of the model to use for response generation" ) class Config: schema_extra = { "example": { "query": "Latest developments in AI", "model_id": "openai/gpt-4o-mini" } } @lru_cache() def get_api_keys(): logger.info("Loading API keys") return { "OPENROUTER_API_KEY": f"sk-or-v1-{os.environ['OPENROUTER_API_KEY']}", "BRAVE_API_KEY": os.environ['BRAVE_API_KEY'] } api_keys = get_api_keys() or_client = OpenAI(api_key=api_keys["OPENROUTER_API_KEY"], base_url="https://openrouter.ai/api/v1") # In-memory storage for conversations conversations: Dict[str, List[Dict[str, str]]] = {} last_activity: Dict[str, float] = {} # Token encoding encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") def limit_tokens(input_string, token_limit=6000): return encoding.decode(encoding.encode(input_string)[:token_limit]) def calculate_tokens(msgs): return sum(len(encoding.encode(str(m))) for m in msgs) def chat_with_llama_stream(messages, model="openai/gpt-4o-mini", max_llm_history=4, max_output_tokens=2500): logger.info(f"Starting chat with model: {model}") while calculate_tokens(messages) > (8000 - max_output_tokens): if len(messages) > max_llm_history: messages = [messages[0]] + messages[-max_llm_history:] else: max_llm_history -= 1 if max_llm_history < 2: error_message = "Token limit exceeded. Please shorten your input or start a new conversation." logger.error(error_message) raise HTTPException(status_code=400, detail=error_message) try: response = or_client.chat.completions.create( model=model, messages=messages, max_tokens=max_output_tokens, stream=True ) full_response = "" for chunk in response: if chunk.choices[0].delta.content is not None: content = chunk.choices[0].delta.content full_response += content yield content # After streaming, add the full response to the conversation history messages.append({"role": "assistant", "content": full_response}) logger.info("Chat completed successfully") except Exception as e: logger.error(f"Error in model response: {str(e)}") raise HTTPException(status_code=500, detail=f"Error in model response: {str(e)}") async def verify_api_key(api_key: str = Security(api_key_header)): if api_key != API_KEY: logger.warning("Invalid API key used") raise HTTPException(status_code=403, detail="Could not validate credentials") return api_key # SQLite setup DB_PATH = '/app/data/conversations.db' def init_db(): logger.info("Initializing database") os.makedirs(os.path.dirname(DB_PATH), exist_ok=True) conn = sqlite3.connect(DB_PATH) c = conn.cursor() c.execute('''CREATE TABLE IF NOT EXISTS conversations (id INTEGER PRIMARY KEY AUTOINCREMENT, user_id TEXT, conversation_id TEXT, message TEXT, response TEXT, timestamp DATETIME DEFAULT CURRENT_TIMESTAMP)''') conn.commit() conn.close() logger.info("Database initialized successfully") init_db() def update_db(user_id, conversation_id, message, response): logger.info(f"Updating database for conversation: {conversation_id}") conn = sqlite3.connect(DB_PATH) c = conn.cursor() c.execute('''INSERT INTO conversations (user_id, conversation_id, message, response) VALUES (?, ?, ?, ?)''', (user_id, conversation_id, message, response)) conn.commit() conn.close() logger.info("Database updated successfully") async def clear_inactive_conversations(): while True: logger.info("Clearing inactive conversations") current_time = time.time() inactive_convos = [conv_id for conv_id, last_time in last_activity.items() if current_time - last_time > 1800] # 30 minutes for conv_id in inactive_convos: if conv_id in conversations: del conversations[conv_id] if conv_id in last_activity: del last_activity[conv_id] logger.info(f"Cleared {len(inactive_convos)} inactive conversations") await asyncio.sleep(60) # Check every minute @app.on_event("startup") async def startup_event(): logger.info("Starting up the application") FastAPICache.init(InMemoryBackend(), prefix="fastapi-cache") asyncio.create_task(clear_inactive_conversations()) @app.post("/coding-assistant") async def coding_assistant(query: QueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)): """ Coding assistant endpoint that provides programming help based on user queries. Available models: - meta-llama/llama-3-70b-instruct (default) - anthropic/claude-3.5-sonnet - deepseek/deepseek-coder - anthropic/claude-3-haiku - openai/gpt-3.5-turbo-instruct - qwen/qwen-72b-chat - google/gemma-2-27b-it - openai/gpt-4o-mini Requires API Key authentication via X-API-Key header. """ logger.info(f"Received coding assistant query: {query.user_query}") if query.conversation_id not in conversations: conversations[query.conversation_id] = [ {"role": "system", "content": "You are a helpful assistant proficient in coding tasks. Help the user in understanding and writing code."} ] conversations[query.conversation_id].append({"role": "user", "content": query.user_query}) last_activity[query.conversation_id] = time.time() # Limit tokens in the conversation history limited_conversation = conversations[query.conversation_id] def process_response(): full_response = "" for content in chat_with_llama_stream(limited_conversation, model=query.model_id): full_response += content yield content background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.user_query, full_response) logger.info(f"Completed coding assistant response for query: {query.user_query}") return StreamingResponse(process_response(), media_type="text/event-stream") # New functions for news assistant def internet_search(query, search_type="web", num_results=20): logger.info(f"Performing internet search for query: {query}, type: {search_type}") url = f"https://api.search.brave.com/res/v1/{'web' if search_type == 'web' else 'news'}/search" headers = { "Accept": "application/json", "Accept-Encoding": "gzip", "X-Subscription-Token": api_keys["BRAVE_API_KEY"] } params = {"q": query} response = requests.get(url, headers=headers, params=params) if response.status_code != 200: logger.error(f"Failed to fetch search results. Status code: {response.status_code}") return [] search_data = response.json()["web"]["results"] if search_type == "web" else response.json()["results"] processed_results = [ { "title": item["title"], "snippet": item["extra_snippets"][0], "last_updated": item.get("age", ""), "url":item.get("url", "") } for item in search_data if item.get("extra_snippets") ][:num_results] logger.info(f"Retrieved {len(processed_results)} search results") return processed_results @lru_cache(maxsize=100) def cached_internet_search(query: str): logger.info(f"Performing cached internet search for query: {query}") return internet_search(query, search_type="news") def analyze_data(query, data_type="news"): logger.info(f"Analyzing {data_type} for query: {query}") if data_type == "news": data = cached_internet_search(query) prompt_generator = generate_news_prompt system_prompt = NEWS_ASSISTANT_PROMPT else: data = internet_search(query, search_type="web") prompt_generator = generate_search_prompt system_prompt = SEARCH_ASSISTANT_PROMPT if not data: logger.error(f"Failed to fetch {data_type} data") return None prompt = prompt_generator(query, data) messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ] logger.info(f"{data_type.capitalize()} analysis completed") return messages,data class QueryModel(BaseModel): query: str = Field(..., description="Search query") model_id: ModelID = Field( default="openai/gpt-4o-mini", description="ID of the model to use for response generation" ) class Config: schema_extra = { "example": { "query": "What are the latest advancements in quantum computing?", "model_id": "meta-llama/llama-3-70b-instruct" } } def search_assistant_api(query, data_type, model="openai/gpt-4o-mini"): logger.info(f"Received {data_type} assistant query: {query}") messages, search_data = analyze_data(query, data_type) if not messages: logger.error(f"Failed to fetch {data_type} data") raise HTTPException(status_code=500, detail=f"Failed to fetch {data_type} data") def process_response(): logger.info(f"Generating response using LLM: {messages}") full_response = "" for content in chat_with_llama_stream(messages, model=model): full_response += content yield content logger.info(f"Completed {data_type} assistant response for query: {query}") logger.info(f"LLM Response: {full_response}") yield ""+ json.dumps(search_data)+"" return process_response def create_streaming_response(generator): return StreamingResponse(generator(), media_type="text/event-stream") @app.post("/news-assistant") async def news_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)): """ News assistant endpoint that provides summaries and analysis of recent news based on user queries. Requires API Key authentication via X-API-Key header. """ response_generator = search_assistant_api(query.query, "news", model=query.model_id) return create_streaming_response(response_generator) @app.post("/search-assistant") async def search_assistant(query: QueryModel, api_key: str = Depends(verify_api_key)): """ Search assistant endpoint that provides summaries and analysis of web search results based on user queries. Requires API Key authentication via X-API-Key header. """ response_generator = search_assistant_api(query.query, "web", model=query.model_id) return create_streaming_response(response_generator) from pydantic import BaseModel, Field import yaml import json from yaml.loader import SafeLoader class FollowupQueryModel(BaseModel): query: str = Field(..., description="User's query for the followup agent") model_id: ModelID = Field( default="openai/gpt-4o-mini", description="ID of the model to use for response generation" ) conversation_id: str = Field(default_factory=lambda: str(uuid4()), description="Unique identifier for the conversation") user_id: str = Field(..., description="Unique identifier for the user") tool_call: Literal["web", "news", "auto"] = Field( default="auto", description="Type of tool to call (web, news, auto)" ) class Config: schema_extra = { "example": { "query": "How can I improve my productivity?", "model_id": "openai/gpt-4o-mini", "conversation_id": "123e4567-e89b-12d3-a456-426614174000", "user_id": "user123", "tool_call": "auto" } } import re def parse_followup_and_tools(input_text): # Remove extra brackets and excess quotes cleaned_text = re.sub(r'\[|\]|"+', ' ', input_text) # Extract response content response_pattern = re.compile(r'(.*?)', re.DOTALL) response_parts = response_pattern.findall(cleaned_text) combined_response = ' '.join(response_parts) # Normalize spaces in the combined response combined_response = ' '.join(combined_response.split()) parsed_interacts = [] parsed_tools = [] # Parse interacts and tools blocks = re.finditer(r'<(interact|tools?)(.*?)>(.*?)', cleaned_text, re.DOTALL) for block in blocks: block_type, _, content = block.groups() content = content.strip() if block_type == 'interact': question_blocks = re.split(r'\s*-\s*text:', content)[1:] for qblock in question_blocks: parts = re.split(r'\s*options:\s*', qblock, maxsplit=1) if len(parts) == 2: question = ' '.join(parts[0].split()) # Normalize spaces options = [' '.join(opt.split()) for opt in re.split(r'\s*-\s*', parts[1]) if opt.strip()] parsed_interacts.append({'question': question, 'options': options}) elif block_type.startswith('tool'): # This will match both 'tool' and 'tools' tool_match = re.search(r'text:\s*(.*?)\s*options:\s*-\s*(.*)', content, re.DOTALL) if tool_match: tool_name = ' '.join(tool_match.group(1).split()) # Normalize spaces option = ' '.join(tool_match.group(2).split()) # Normalize spaces parsed_tools.append({'name': tool_name, 'input': option}) return combined_response, parsed_interacts, parsed_tools @app.post("/followup-agent") async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)): """ Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries. Requires API Key authentication via X-API-Key header. """ logger.info(f"Received followup agent query: {query.query}") if query.conversation_id not in conversations: conversations[query.conversation_id] = [ {"role": "system", "content": FOLLOWUP_AGENT_PROMPT} ] conversations[query.conversation_id].append({"role": "user", "content": query.query}) last_activity[query.conversation_id] = time.time() # Limit tokens in the conversation history limited_conversation = conversations[query.conversation_id] def process_response(): full_response = "" for content in chat_with_llama_stream(limited_conversation, model=query.model_id): full_response += content yield content logger.info(f"LLM RAW response for query: {query.query}: {full_response}") response_content, interact,tools = parse_followup_and_tools(full_response) result = { "response": response_content, "clarification": interact } yield "\n\n" + json.dumps(result) # Add the assistant's response to the conversation history conversations[query.conversation_id].append({"role": "assistant", "content": full_response}) background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response) logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}") return StreamingResponse(process_response(), media_type="text/event-stream") @app.post("/v2/followup-agent") async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)): """ Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries. Requires API Key authentication via X-API-Key header. """ logger.info(f"Received followup agent query: {query.query}") if query.conversation_id not in conversations: conversations[query.conversation_id] = [ {"role": "system", "content": FOLLOWUP_AGENT_PROMPT} ] conversations[query.conversation_id].append({"role": "user", "content": query.query}) last_activity[query.conversation_id] = time.time() # Limit tokens in the conversation history limited_conversation = conversations[query.conversation_id] def process_response(): full_response = "" for content in chat_with_llama_stream(limited_conversation, model=query.model_id): full_response += content yield content logger.info(f"LLM RAW response for query: {query.query}: {full_response}") response_content, interact,tools = parse_followup_and_tools(full_response) result = { "clarification": interact } yield "" + json.dumps(result) # Add the assistant's response to the conversation history conversations[query.conversation_id].append({"role": "assistant", "content": full_response}) background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response) logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}") return StreamingResponse(process_response(), media_type="text/event-stream") @app.post("/v2/followup-tools-agent") def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)): """ Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries. Requires API Key authentication via X-API-Key header. """ logger.info(f"Received followup agent query: {query.query}") if query.conversation_id not in conversations: conversations[query.conversation_id] = [ {"role": "system", "content": MULTI_AGENT_PROMPT_V2} ] conversations[query.conversation_id].append({"role": "user", "content": query.query}) last_activity[query.conversation_id] = time.time() # Limit tokens in the conversation history limited_conversation = conversations[query.conversation_id] def process_response(): full_response = "" result = dict() # Check if tool_call is specified and call the tool directly if query.tool_call in ["web", "news"]: search_query = query.query search_response = search_assistant_api(search_query, query.tool_call, model=query.model_id) yield "" for content in search_response(): yield content full_response += content yield "" else: for content in chat_with_llama_stream(limited_conversation, model=query.model_id): yield content full_response += content logger.info(f"LLM RAW response for query: {query.query}: {full_response}") response_content, interact, tools = parse_followup_and_tools(full_response) result = { "clarification": interact, "tools": tools } yield ""+ json.dumps(result)+"" # Process tool if present if tools and len(tools) > 0: tool = tools[0] # Assume only one tool is present if tool["name"] in ["news", "web"]: search_query = tool["input"] search_response = search_assistant_api(search_query, tool["name"], model=query.model_id) yield "" for content in search_response(): yield content full_response += content yield "" # Add the assistant's response to the conversation history conversations[query.conversation_id].append({"role": "assistant", "content": full_response}) background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response) logger.info(f"Completed followup agent response for query: {query.query}, send result:{result}, Full response: {full_response}") return StreamingResponse(process_response(), media_type="text/event-stream") @app.post("/v3/followup-agent") async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)): """ Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries. Requires API Key authentication via X-API-Key header. """ logger.info(f"Received followup agent query: {query.query}") if query.conversation_id not in conversations: conversations[query.conversation_id] = [ {"role": "system", "content": FOLLOWUP_AGENT_PROMPT} ] conversations[query.conversation_id].append({"role": "user", "content": query.query}) last_activity[query.conversation_id] = time.time() # Limit tokens in the conversation history limited_conversation = conversations[query.conversation_id] async def process_response(): yield "\n\n" full_response = "" for content in chat_with_llama_stream(limited_conversation, model=query.model_id): full_response += content yield content yield "\n\n" logger.info(f"LLM RAW response for query: {query.query}: {full_response}") # Add a slight delay after sending the full LLM response await asyncio.sleep(0.01) response_content, interact, tools = parse_followup_and_tools(full_response) result = { "clarification": interact } yield "\n\n" yield json.dumps(result) + "\n\n" yield "\n\n" # Add the assistant's response to the conversation history conversations[query.conversation_id].append({"role": "assistant", "content": full_response}) background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response) logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}") return StreamingResponse(process_response(), media_type="text/event-stream") @app.post("/v4/followup-agent") async def followup_agent_v4(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)): """ Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries. Requires API Key authentication via X-API-Key header. """ logger.info(f"Received followup agent query: {query.query}") if query.conversation_id not in conversations: conversations[query.conversation_id] = [ {"role": "system", "content": FOLLOWUP_AGENT_PROMPT} ] conversations[query.conversation_id].append({"role": "user", "content": query.query}) last_activity[query.conversation_id] = time.time() # Limit tokens in the conversation history limited_conversation = conversations[query.conversation_id] async def process_response(): yield ""+"\n" full_response = "" for content in chat_with_llama_stream(limited_conversation, model=query.model_id): full_response += content yield content yield ""+"\n" yield "--END_SECTION--\n" logger.info(f"LLM RAW response for query: {query.query}: {full_response}") response_content, interact, tools = parse_followup_and_tools(full_response) result = { "clarification": interact } yield "" + "\n" yield json.dumps(result) + "\n" yield "" +"\n" yield "--END_SECTION--\n" # Add the assistant's response to the conversation history conversations[query.conversation_id].append({"role": "assistant", "content": full_response}) background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response) logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}") return StreamingResponse(process_response(), media_type="text/event-stream") ## Digiyatra @app.post("/digiyatra-followup") async def followup_agent(query: FollowupQueryModel, background_tasks: BackgroundTasks, api_key: str = Depends(verify_api_key)): """ Followup agent endpoint that provides helpful responses or generates clarifying questions based on user queries. Requires API Key authentication via X-API-Key header. """ logger.info(f"Received followup agent query: {query.query}") if query.conversation_id not in conversations: conversations[query.conversation_id] = [ {"role": "system", "content": FOLLOWUP_DIGIYATRA_PROMPT} ] conversations[query.conversation_id].append({"role": "user", "content": query.query}) last_activity[query.conversation_id] = time.time() # Limit tokens in the conversation history limited_conversation = conversations[query.conversation_id] def process_response(): full_response = "" for content in chat_with_llama_stream(limited_conversation, model=query.model_id): full_response += content yield content logger.info(f"LLM RAW response for query: {query.query}: {full_response}") response_content, interact,tools = parse_followup_and_tools(full_response) result = { "response": response_content, "clarification": interact } yield "\n\n" + json.dumps(result) # Add the assistant's response to the conversation history conversations[query.conversation_id].append({"role": "assistant", "content": full_response}) background_tasks.add_task(update_db, query.user_id, query.conversation_id, query.query, full_response) logger.info(f"Completed followup agent response for query: {query.query}, send result: {result}") return StreamingResponse(process_response(), media_type="text/event-stream") from fastapi.middleware.cors import CORSMiddleware # CORS middleware setup app.add_middleware( CORSMiddleware, allow_origins=[ "http://localhost:3000", "https://www.elevaticsai.com", "https://www.elevatics.cloud", "https://www.elevatics.online", "https://www.elevatics.ai", "https://elevaticsai.com", "https://elevatics.cloud", "https://elevatics.online", "https://elevatics.ai", "https://pvanand-specialized-agents.hf.space" ], allow_credentials=True, allow_methods=["GET", "POST"], allow_headers=["*"], ) if __name__ == "__main__": import uvicorn logger.info("Starting the application") uvicorn.run(app, host="0.0.0.0", port=7860)